Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

On the Lattice Boltzmann Method stabilization for turbulent flow regimes with extremely high Reynolds numbers

Abstract

The paper considers a lattice Boltzmann method stabilization when Reynolds number goes to infinity, i.e. infinitely small viscosity. Stream and collide algorithm is considered and every fractural step is analyzed for stability. As the result of the analysis, the local limiter of the particle probability distribution function evolution is introduced for entropy deviation. The limiter is equivalent to the classic CFD TVD limiters. A set of initial-boundary value problems is solved on D2Q9 lattice to verify the method and its stability properties. The work is supported by RFFI grants 08-07-00074а and 09-07-00078а

About the Author

N. . Evstigneev
Institute for System Analysis, RAS
Russian Federation


References

1. David P. Lockard, Li-Shi Luo, Bart A. Singer. Evaluation of the Lattice-Boltzmann …// NASA/CR-2000-210550 ICASE Report No. 2000-40.

2. Nourgaliev, R.R., Dinh, T.A., Dalal, D.C., Dinh, T.N., and Theofanous, T.G. MuSiC: Multiscale Simulation Code. // UCSB-CRSS Research Report, November 20, 2000, 209p.

3. Huang К. Statistical Mechanics, 2nd edition. – WELLY, ISBN: 978-0-471-81518-1, 1988

4. Alexander J. Wagner. A Practical Introduction to the Lattice Boltzmann Method. - North Dakota State University, Fargo, 2008.

5. Medovikov А.А., Lebedev V.I. Variable time steps optimization…// Russian Journal of Numerical Analysis and Mathematical Modelling, V.20, 3,2005.

6. Brian J. N. Wylie Application of two-dimensional cellular automaton lattice-gas models to the simulation of hydrodynamics. - University of Edinburgh, 1990.

7. Евстигнеев Н.М. Интегрирование трехмерных уравнений.// Вычислительные методы и программирование, Т8, стр. 252-264, 2007г.

8. Evstigneev N. Integration of 3D.. // Proc. Of the VII Int. conf. “Advances in Fluid Mechanics”, Oxford. pp. 194-208, 2008, 15-20 may.

9. Ricot D., Marie S., Sagaut P., Bailly Ch. Lattice …// Journal of Computational Physics 228, pp 4478–4490. 2009.

10. Ansumali S., V. Karlin I. Phys. Rev. Lett. 95, 260605, 2005.

11. Erturk, Corke, Gokcol. Numerical Solutions of 2-D Steady..// International Journal for Numerical Methods in Fluids, Vol. 48, pp. 747-774, 2005.


Review

Views: 55


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)