Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

ELECTRICAL CONDUCTIVITY OF AN INHOMOGENEOUS THIN METAL WIRE IN THE CASE OF AN ANISOTROPIC FERMI SURFACE AND ISOTROPIC ELECTRON SCATTERING

https://doi.org/10.18384/2310-7251-2019-2-49-60

Abstract

We have derived an analytical expression for high-frequency electrical conductivity of a thin metal wire with a dielectric core in the case of the diffuse interaction of metal electrons with the boundaries of the conductive layer. We have analyzed the dependence of the modulus and the argument of electrical conductivity on the ratio of the radii of the wire and the dielectric core, on the effective mass along a straight line perpendicular to the axis of the wire, on the radius of the wire, and on the electric field frequency. The analysis has shown that the effective mass of charge carriers and the boundaries of the metal layer influence its electrical conductivity. The kinetic problem has been generalized to the case of an ellipsoidal Fermi surface of a metal layer, which is a natural generalization of a simpler and more frequently used model of a spherical Fermi surface in the description of transport phenomena. The paper is addressed to designers of integrated circuit elements with specified parameters.

About the Author

D. N. Romanov
P. G. Demidov Yaroslavl State University
Russian Federation


References

1. Sondheimer E. H. The mean free path of electrons in metals // Advances in Physics. 2001. Vol. 50. No. 6. P. 499-537.

2. Daniel G. Electron mean free path in elemental metals // Journal of Applied Physics. 2016. Vol. 119. Iss. 8. P. 085101.

3. Pengyuan Z., Daniel G. The anisotropic size effect of the electrical resistivity of metal thin films: Tungsten // Journal of Applied Physics. 2017. Vol. 122. Iss. 13. P. 135301.

4. Абрикосов А. А. Основы теории металлов. М.: Наука, 1987. 520 с.

5. Dingle R. B. The electrical conductivity of thin wires // Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences. 1950. Vol. 201. No. 1067. P. 545-560.

6. Dephasing of electrons in mesoscopic metal wires / Pierre F., Gougam A. B., Anthore A., Pothier H., Esteve D., Birge N. O. // Physical Review B. 2003. Vol. 68. No. 8. P. 085413.

7. Кузнецова И. А., Хадчукаева Р. Р., Юшканов А. А. Влияние поверхностного рассеяния носителей заряда на высокочастотную проводимость тонкой цилиндрической полупроводниковой проволоки // Физика твердого тела. 2009. Т. 51. № 10. С. 2022-2027.

8. Fuchs K. The conductivity of thin metallic films according to the electron theory of metals // Mathematical Proceedings of the Cambridge Philosophical Society. 1938. Vol. 34. Iss. 1. P. 100-108.

9. Soffer S. B. Statistical model for the size effect in electrical conduction // Journal of Applied Physics. 1967. Vol. 38. Iss. 4. P. 1710.

10. Кузнецова И. А., Савенко О. В., Юшканов А. А. Влияние граничных условий на электропроводность тонкой цилиндрической проволоки // Микроэлектроника. 2016. Т. 45. № 2. С. 126-134.

11. Weihuang Xue, Wenhua Gu. Conductivity size effect of polycrystalline metal nanowires // AIP Advances. 2016. Vol. 6. Iss. 1. P. 115001.

12. Mayadas A. F., Shatzkes M. Electrical-resistivity model for polycrystalline films: the case of arbitrary reflection at external surface // Physical Review B. 1970. Vol. 1. Iss. 4. P. 1382-1389.

13. Munoz R. C., Arenas C. Size effects and charge transport in metals: Quantum theory of the resistivity of nanometric metallic structures arising from electron scattering by grain boundaries and by rough surfaces // Applied Physics Review. 2017. Vol. 4. Iss. 1. P. 011102.

14. Завитаев Э. В., Юшканов А. А. Влияние характера отражения электронов на электромагнитные свойства неоднородной цилиндрической частицы // Физика твердого тела. 2005. Т. 47. № 7. С. 1153-1161.


Review

Views: 82


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)