Preview

Вестник Государственного университета просвещения. Серия: Физика-Математика

Расширенный поиск

ОБ АСИМПТОТИКЕ ТЕЧЕНИЙ РАЗРЕЖЕННОГО ГАЗАС НЕСКОЛЬКИМИ МАЛЫМИ ПАРАМЕТРАМИ

Аннотация

Рассмотрен ряд асимптотических задач динамики разреженных газов с несколькими малыми параметрами, когда результирующее асимптотическое состояние газа зависит от относительной скорости стремления этих параметров к своим предельным значениям. К задачам указанного типа относятся: 1. Определение структуры переходных по степени разреженности вязких ударных и пограничных слоев. 2. Предельное решение задачи о слое Кнудсена на «дне» пограничного слоя Прандтля при обобщенной (на случай физико-химических процессов) модели зеркально-диффузной поверхности Максвелла. 3. Расчет коэффициента аккомодации по внутренним степеням свободы многоатомных («лазерных») молекул при адсорбции их на поверхности неравновесно возбужденного двухтемпературного аэрозоля. 4. Гиперзвуковое обтекание тонких тел под большими углами атаки, когда параметр подобия k¥ [5] стремится к нулю, и степень сжатия в ударной волне ¥ -1 ¡ ¡, а их «относительная» скорость ƒ ≈ const ƒ . 5. Определение асимптотической структуры неравновесных предельных течений с замкнутыми линиями тока, когда характерные значения релаксационных параметров Gk и значение обратной величины числа Рейнольдса Re-1 стремятся к нулю: Gk¡ 0, Re-1 ¡ 0.

Об авторах

М. М. Кузнецов
Московский государственный областной университет
Россия


Ю. Д. Кулешова
Московский государственный областной университет
Россия


Список литературы

1. Валландер С.В., Нагнибеда Е.А., Рыдалевская М.А. Некоторые вопросы кинетиче- ской теории химически реагирующей смеси газов. Ленинград: Издательство ЛГУ, 1977, 280 с.

2. Баранцев Р.Г. Взаимодействие разреженных газов с обтекаемыми поверхностями. М.: Наука, 1975, 344 с.

3. Филиппов Б.В., Хантулева Т.А. Граничные задачи нелокальной гидродинамики. Л.: Ленинградский университет, 1984, 87 с.

4. Кузнецов М.М., Яламов Ю.И. Модели асимптотической теории динамики неравновесных сред. М.: Издательство МГОУ, 2007, 257 с.

5. Сычев В.В. Пространственные гиперзвуковые течения около тонких тел при больших углах атаки. // ПММ. 1960. Т. 24. вып. 2, с. 205-212.

6. Тирский Г.А. К теории гиперзвукового обтекания плоских и осесимметричных затупленных тел вязким химически реагирующим многокомпонентным потоком газа при наличии вдува. // Научные труды Инст. механики, Изд-во МГУ, 1975, ¢39, с.5-38.

7. Cheng H.K. The Viscous Shock Layer Problem Formulation Revisited // International Conference of Research in Hypersonic Flows and Hypersonic Technologies, Sept. 19-21, 1994, Zhykovsky, Russia, Book of Abstracts.

8. Maxwell J.C. On stresses in rarefied gas arising from inequilitis of temperatures, appendix: The Scientific paper of J.C. Maxwell, Paris, 1927, vol.II, p.681-712.

9. Луцет М.О. О течении релаксирующего газа вблизи твердой поверхности. // ПМТФ, 1973, ¢4, с.33-39.

10. Гиро Ж.П. Газовая динамика с точки зрения кинетической теории. // Сб. пер. Механика, 1974, ¢3, с.53-75.

11. Москалев О.Б. Н - теорема Больцмана для газа в термостате. // Докл. АН СССР, 1977, т.232, ¢3, с.521-523.

12. Месситер А.Ф. Подъемная сила тонких треугольных крыльев по ньютоновской теории. //Ракетная техника и космонавтика, 1963, ¢ 4, с. 31-41.

13. Авдуевский В.С. Расчет трехмерного пограничного слоя на линиях растекания. //Известия АН СССР, ОТН, Механика и машиностроение, 1962, ¢ 1, с. 32-41.


Рецензия

Просмотров: 52


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)