Synthesis of ZnO-based multylayer structures with periodic spatial localization of a donor impurity
https://doi.org/10.18384/2310-7251-2022-3-58-73
Abstract
Aim. We study the growth processes and electrical and optical properties of periodic multilayer structures based on alternating layers of undoped and Al-doped zinc oxide as functions of the thickness of single layers and synthesis temperature.
Methodology. Periodic multilayer structures are deposited in a single vacuum cycle by sequential deposition of undoped and Al-doped ZnO layers from two magnetron sources. A comparative study of the structure and functional properties of single layers of undoped and Al-doped ZnO, as well as multilayer structures based on them, is performed using XRD, SEM, and optical spectroscopy.
Results. The structural transformation in n×(AZO/ZnO) multilayers are studied depending on the thickness and number of elementary layers, as well as on the synthesis temperature.
Research implications. The obtained results show ways to produce alternative transparent electrodes based on n×(AZO/ZnO) multilayer structures for new generation transparent electronic devices.
About the Authors
A. Kh. AbduevRussian Federation
Aslan Kh. Abduev – Cand. Sci. (Phys.-Math.), Assoc. Prof., Department of Nanotechnologies and Microsystem Technology, Engineering Academy; Senior Researcher, Educational and Scientific Laboratory of Theoretical and Applied Nanotechnology
ul. Miklukho-Maklaya 6, Moscow 117198
ul. Very Voloshinoi 24, Mytishchi 141014, Moscow Region
A. K. Akhmedov
Akhmed K. Akhmedov – Cand. Sci. (Phys.-Math.), Leading Researcher
ul. M. Yaragskogo 94, Makhachkala 367015
E. K. Murliev
Eldar K. Murliev – Research Assistant
ul. M. Yaragskogo 94, Makhachkala 367015
V. V. Belyev
Victor V. Belyaev – Dr. Sci. (Phys.-Math.), Prof., Department of Fundamental Physics and Nanotechnology, Prof., Department of Nanotechnologies and Microsystem Technology, Engineering Academy
ul. Miklukho-Maklaya 6, Moscow 117198
ul. Very Voloshinoi 24, Mytishchi 141014, Moscow Region
A. Sh. Asvarov
Abil Sh. Asvarov – Cand. Sci. (Phys.-Math.), Leading Researcher
ul. M. Yaragskogo 94, Makhachkala 367015
M. A. A. Frah
Mahasin Ali Abdelrahman Frah – Postgraduate Student, Department of Nanotechnologies and Microsystem Technology
ul. Miklukho-Maklaya 6, Moscow 117198
References
1. Park J., Heo S., Park K., Song M.H., Kim J.-Y., Kyung G., Ruoff R.S., Park J.-U., Bien F. Research on flexible display at Ulsan National Institute of Science and Technology // npj Flex. Electron. 2017. Vol. 1. P. 9. https://doi.org/10.1038/s41528-017-0006-9
2. Afre R.A., Sharma N., Sharon M., Sharon M. Transparent conducting oxide films for various applications: a review // Rev. Adv. Mater. Sci. 2018. Vol. 53. P. 79-89.
3. Ginley D.S., Hosono H., Paine D.C. Handbook of Transparent Conductors. Springer Science & Business Media, 2010. 534 p.
4. Eluyemi M.S., Eleruja M.A., Adedeji A.V., Olofinjana B., Fasakin O., Akinwunmi O.O., Ilori O.O., Famojuro A.T., Ayinde S.A., Ajayi E.O.B. Synthesis and Characterization of Graphene Oxide and Reduced Graphene Oxide Thin Films Deposited by Spray Pyrolysis Method // Graphene 2016. Vol. 5. P. 143-154. http://dx.doi.org/10.4236/graphene.2016.53012
5. Zhou Y., Azumi R. Carbon nanotube based transparent conductive films: progress, challenges, and perspectives // Science and Technology of Advanced Materials 2016. Vol. 17. № 1. P. 493–516. http://dx.doi.org/10.1080/14686996.2016.1214526
6. Ma Q., Wang H.-H., Zhou L., Fan J., Liao C., Guo X., Zhang S. Robust Gate Driver on Array Based on Amorphous IGZO Thin-Film Transistor for Large Size High-Resolution Liquid Crystal Displays // IEEE Journal of the Electron Devices Society 2019. Vol. 7. P. 717-721.
7. Yang T.-T., Kuo D.-H., Tang K.-P. n-type Sn substitution in amorphous IGZO film by sol-gel method: A promoter of hall mobility up to 65 cm2/V·s // Journal of Non-Crystalline Solids 2021. Vol. 553. P. 120503.
8. Jiang H.X., Lin J.Y. Semiconductor superlattices with periodic disorder // Journal of Applied Physics 1984. Vol. 63. P. 1988. P. 1984-1989. doi: 10.1063/1.341098
9. Lee H.B., Jin W.Y., Ovhal M.M., Kumar N., Kang J.W. Flexible transparent conducting electrodes based on metal meshes for organic optoelectronic device applications: a review // J. Mater. Chem. С. 2019. Vol. 7. № 5. P. 1087-1110. DOI: 10.1039/c8tc04423f
10. Lee J.H., Woo K.Y., Kim K.H., Kim H.-D., Kim Т.G. ITO/Ag/ITO multilayer-based transparent conductive // Optics Letters 2013. Vol. 23. № 1. P. 5055-5058. DOI: 10.1364/OL.38.005055
11. Asvarov A.Sh., Muslimov A.E., Akhmedov A.K., Abduev A.Kh., Kanevsky V.M. A Laboratory Apparatus for Spark Plasma Sintering of Ceramic and Composite Materials // Instruments and Experimental Techniques 2019. Vol. 62. P.726–730.
12. Akhmedov A.K., Asvarov A.S., Muslimov A.E., Kanevsky V.M. A Multi-Position Drum-Type Assembly for Simultaneous Film Deposition at Different Temperatures in a Single Sputter Cycle–Application to ITO Thin Films // Coatings 2020. Vol. 10. № 11. P. 1076. https://doi.org/10.3390/coatings10111076
13. Maldonado F., Stashans A. Al-doped ZnO: Electronic, electrical and structural properties // Journal of Physics and Chemistry of Solids 2010. Vol. 71. № 5. P. 784-787. https://doi.org/10.1016/j.jpcs.2010.02.001
14. Abduev A., Akmedov A., Asvarov A., Chiolerio A. A Revised Growth Model for Transparent Conducting Ga Doped ZnO Films: Improving Crystallinity by Means of Buffer Layers // Plasma Process. Polym. 2015. Vol. 12. P. 725-733. https://doi.org/10.1002/ppap.201400230
15. Gultepe O., Atay F. The effect of Al element on structural, optical, electrical, surface and photocatalytic properties of Sol-gel derived ZnO films // Appl. Phys. A 2022. V. 128. P. 25. https://doi.org/10.1007/s00339-021-05173-6
16. Aydemir S., Karakaya S. The effect of Al on structure, morphology and optical properties of network texture ZnO thin films synthesized using the sol–gel method //Optik 2015. Vol. 126. № 18. P. 1735-1739. https://doi.org/10.1016/j.ijleo.2015.04.055
Supplementary files
![]() |
1. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(83KB)
|
Indexing metadata ▾ |
![]() |
2. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(763KB)
|
Indexing metadata ▾ |
![]() |
3. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(280KB)
|
Indexing metadata ▾ |
![]() |
4. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(257KB)
|
Indexing metadata ▾ |
![]() |
5. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(329KB)
|
Indexing metadata ▾ |
![]() |
6. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(333KB)
|
Indexing metadata ▾ |
![]() |
7. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(138KB)
|
Indexing metadata ▾ |
![]() |
8. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(795KB)
|
Indexing metadata ▾ |
![]() |
9. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(334KB)
|
Indexing metadata ▾ |
![]() |
10. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(145KB)
|
Indexing metadata ▾ |
![]() |
11. Неозаглавлен | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(150KB)
|
Indexing metadata ▾ |