Entangled optical solitons in the dielectric medium of a liquid crystal
https://doi.org/10.18384/2310-7251-2022-3-28-38
Abstract
Aim. We implement a stochastic representation of the wave function for a pair of entangled solitons in a liquid crystal. The applicability of a special soliton representation of quantum mechanics for modeling real entangled systems is demonstrated.
Methodology. The main method used in the study is mathematical modeling. As part of the calculation of stochastics by the method of abstraction and concretization, a detailed mathematical apparatus is presented, adapted to the real physical case. The behavior of the material is qualitatively analyzed for the case of propagation of soliton pulses through a dielectric medium.
Results. The main advantage of the stochastic theory for a system of entangled solitons lies in the possibility of modeling entangled states of real systems, i.e. photons. In this work, optical 1D envelopes of solitons in a nematic liquid crystal are considered under approximate conditions of a real physical problem.
Research implications. The theoretical and/or practical significance lies in the fundamental possibility of modeling real entangled systems based on the constructed stochastic model of entangled solitons and subsequent creation of special applications on its basis. In particular we demonstrate a prospect for applying quantum teleportation to the problem of propagation of quantum computation for use among the components of quantum computing networks.
About the Authors
A. V. KondakovaRussian Federation
Anastasya V. Kondakova – Student, Faculty of Physics and Mathematics
ul. Very Voloshinoi 24, Mytishchi 141014, Moscow Region
T. F. Kamalov
Moscow Region State University
Russian Federation
Timur F. Kamalov – Cand. Sci. (Phys.-Math.), Assoc. Prof., Fundamental Physics and Nanotechnology Department
ul. Very Voloshinoi 24, Mytishchi 141014, Moscow Region
References
1. Experimental quantum teleportation / Bouwmeester D., Pan J. W., Mattle K., Eibl M., Weinfurter H., Zeilinger A. // Nature. 1997. Vol. 390. Iss. 6660. P. 575–579. DOI: 10.1038/37539.
2. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels / Boschi D., Branca S., De Martini F., Hardy L., Popescu S. // Physical Review Letters. 1998. Vol. 80. Iss. 6. P. 1121. DOI: 10.1103/PhysRevLett.80.1121.
3. Lee R. K., Lai Y., Malomed B. A. Quantum correlations in bound soliton pairs and trains in fiber lasers // Physical Review A. 2004. Vol. 70. Iss. 6. P. 063817. DOI: 10.1103/PhysRevA.70.063817.
4. Rybakov Y. P., Kamalov T. F. Random Soliton Realization of Quantum Mechanics and Stochastic Qubits. In: Vestnik Rossiyskogo universiteta druzhby narodov. Seriya: Prikladnaya i komp'yuternaya matematika [RUDN Journal of Applied and Computer Mathematics], 2003, vol. 2, no. 2, pp. 117–122.
5. Rybakov Y. P., Kamalov T. F. Entangled solitons and stochastic q-bits // Physics of Particles and Nuclei Letters. 2007. Vol. 4. No. 2. P. 119–121. DOI: 10.1134/S1547477107020033.
6. Rybakov Y. P., Kamalov T. F. Probabilistic simulation of quantum states // Proceedings of the SPIE. 2008. Vol. 7023. Quantum Informatics 2007. P. 702307. DOI: 10.1117/12.801898.
7. Reinbert C. G., Minzoni A. A., Smyth N. F. Spatial soliton evolution in nematic liquid crystals in the nonlinear local regime // Journal of the Optical Society of America B: Optical Physics. 2006. Vol. 23. Iss. 2. P. 294–301. DOI: 10.1364/JOSAB.23.000294.
8. Kath W. L., Smyth N. F. Soliton evolution and radiation loss for the nonlinear Schrödinger equation // Physical Review E. 1995. Vol. 51. Iss. 2. P. 1484. DOI: 10.1103/PhysRevE.51.1484.
9. Rybakov Y. P., Kamalov T. F. Entangled optical solitons in nonlinear Kerr dielectric // Proceedings SPIE. 2007. Vol. 6729. ICONO 2007: Coherent and Nonlinear Optical Phenomena. P. 67291T. DOI: 10.1117/12.752137.
10. Scheme for the generation of entangled solitons for quantum communication / Leuchs G., Ralph T. C., Silberhorn Ch., Korolkova N. // Journal of Modern Optics. 1999. Vol. 46. Iss. 14. P. 1927–1939. DOI: 10.1080/09500349908231382.
11. Remote quantum entanglement between two micromechanical oscillators / Riedinger R., Wallucks A., Marinkovic I., Löschnauer C., Aspelmeyer M., Hong S., Gröblacher S. // Nature. 2018. Vol. 556. Iss. 7702. P. 473–477. DOI: 10.1038/s41586-018-0036-z.
12. Optical rotation dispersion of cholestericnematic mixture / Vasilchikova E. N., Dmitrieva A. D., Kondakova A. V., Kurilov A. D., Usachev V. V., Muravsky A. A., Chausov D. N. // Journal of Physics: Conference Series. 2021. Vol. 2056: International Conference “Advanced Element Base of Micro- and Nano-Electronics with Using of ToDate Achievements of Theoretical Physics” (MRSU 2021) (20–23 April 2021, Moscow, Russia). P. 012030. DOI: 10.1088/1742-6596/2056/1/012030.
13. Electro-optical modulation in planar-oriented ferroelectric liquid crystals with a subwavelength spiral pitch (Электрооптическая модуляция в планарно-ориентированных сегнетоэлектрических жидких кристаллах с субволновым шагом спирали) / Pozhidaev E. P., Barbashov V. A., Kesaev V. V., Pogonin V. I., Samagin S. A., Kotova S. P., Torgova S. I., Chigrinov V. G. // Жидкие кристаллы и их практическое использование. 2017. Т. 17. № 4. C. 90–96. DOI: 10.18083/LCAppl.2017.4.90.
14.
Supplementary files
![]() |
1. Заявление на публикацию | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(148KB)
|
Indexing metadata ▾ |
|
2. Заявление на публикацию второго автора | |
Subject | ||
Type | Исследовательские инструменты | |
View
(190KB)
|
Indexing metadata ▾ |