Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

Time evolution of Bose-condensed atoms in a three-well trap under the condition of a non-zero initial population of the first well

https://doi.org/10.18384/2310-7251-2022-2-28-41

Abstract

Aim. The purpose is to study the kinetics of Bose-condensed atoms in a three-well trap.

Methodology. Temporal evolution of the population of atoms in the wells of a three-well trap is investigated theoretically.

Results. Oscillatory modes of atomic evolution and the manifestation of quantum self-capture of the system are demonstrated.

Research implications. The tunneling kinetics of Bose-condensed atoms in a three-well trap is determined by the parameters of the trap.

About the Authors

O. F. Vasilieva
Pridnestrovian State University
Moldova, Republic of

Olga F. Vasilieva – Cand. Sci. (Phys.-Math.), Assoc. Prof., Department of Quantum Radiophysics and Communication Systems

128 ulitsa 25 Oktyabrya, Tiraspol MD3300



A. P. Zingan
Pridnestrovian State University
Moldova, Republic of

Anna P. Zingan – Cand. Sci. (Phys.-Math.), Assoc. Prof., Department of Quantum Radiophysics and Communication Systems

128 ulitsa 25 Oktyabrya, Tiraspol MD3300



References

1. Li W., Haque M., Komineas S. Vortex dipole in a trapped two-dimensional Bose-Einstein condensate. In: Physical Review A, 2008, vol. 77, iss. 5, pp. 053610. DOI: 10.1103/PhysRevA.77.053610.

2. Rogel-Salazar J. The Gross-Pitaevskii equation and Bose-Einstein condensate. In: European Journal of Physics, 2013, vol. 34, no. 2, pp. 247–257. DOI: 10.1088/0143-0807/34/2/247.

3. Boccato C., Brennecke C., Cenatiempo S., Schbein B. Complete Bose-Einstein condensation the Gross-Pitaevskii regime. In: Communications in Mathematical Physics, 2018, vol. 359, pp. 975–1026. DOI: 10.1007/s00220-017-3016-5.

4. McKay D., Ray U., Natu S. M., Russ P., Ceperley D., DeMarco B. Metastable Bose-Einstein condensation in a strongly correlated optical lattice. In: Physical Review A, 2015, vol. 91, iss. 2, pp. 023625. DOI: 10.1103/PhysRevA.91.023625.

5. Li Y., Yuan J., Hemmerich A., Li X. Rotation-symmetry-enforced coupling of spin and angular momentum for p-orbital bosons. In: Physical Review Letters, 2018, vol. 121, iss. 9, pp. 93401. DOI: 10.1103/PhysRevLett.121.093401.

6. Fritsch A. R., Lu M., Reid G. H., Pineiro A. M., Spielman I. B. Creating solitons with controllable and near-zero velocity in Bose-Einstein condensates. In: Physical Review A, 2020, vol. 101, iss. 5, pp. 053629. DOI: 10.1103/PhysRevA.101.053629.

7. Vasilieva O. F., Zingan A. P. Dynamics of nonlinear tunneling of Bose-condensed atoms in a double-well trap. In: Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Fizika-Matematika [Bulletin of the Moscow Region State University. Series: Physics and Mathematics], 2019, no. 2, pp. 83–95. DOI: 10.18384-2310-7251-2019-2-83-95.

8. Khadzhi P. I., Vasilieva O. F. Coherent dynamics of Bose-condensed atoms in a double-well trap. In: Journal of Nanoelectronics and Optoelectronics, 2011, vol. 6, no. 4, pp. 433–451. DOI: 10.1166/jno.2011.1194.

9. Byrnes T., Wen K., Yamamoto Y. Macroscopic quantum computation using Bose-Einstein condensates. In: Physical Review A, 2012, vol. 85, pp. 040306(R). DOI: 10.1103/PhysRevA.85.040306.

10. Byrnes T., Rosseau D., Khosla M., Pyrkov A., Thomosen A., Mukai T., Koyama S., Abdelrahman A., Ilo-Okeke E. Macroscopic quantum information processing using spin coherent states. In: Optics Communication, 2015, vol. 337, pp. 102–109. DOI: 10.1016/j.optcom.2014.08.017.

11. Dadras S., Cresch A., Croiseau C., Wimberger S., Summy G. S. Quantum walk in momentum space with a Bose-Einstein condensate. In: Physical Review Letters, 2018, vol. 121, iss. 7, pp. 70402. DOI: 10.1103/PhysRevLett.121.070402.

12. Abbas A. H., Meng X., Patil R. S., Ross J. A., Truscott A. C., Hodgman S. S. Rapid generation of metastable helium Bose-Einstein condensates. In: Physical Review A, 2021, vol. 103, iss. 5, pp. 053317. DOI: 10.1103/PhysRevA.103.053317.

13. Dekker N. H., Lee C. S., Lorent V., Thywissen J. H., Smith S. P., Drndic M., Westervelt R. M., Prentiss M. Guiding neutral atoms on a chip. In: Physical Review Letters, 2000, vol. 84, iss. 6, pp. 1124. DOI: 10.1103/PhysRevLett.84.1124.

14. Mossmann S., Jung C. Semiclassical approach to Bose-Einstein condensates in a triple well potential. In: Physical Review A, 2006, vol. 74, iss. 3, pp. 033601. DOI: 10.1103/PhysRevA.74.033601.

15. Viscondi T. F., Furuya K. Dynamics of a Bose-Einstein condensate in a symmetric triplewell trap. In: Journal of Physics A: Mathematical and Theoretical, 2011, vol. 44, no. 17, pp. 175301. DOI: 10.1088/1751-8113/44/17/175301.

16. Rubio J. L., Ahufinger V., Busch Th., Mompart J. Optimal conditions for spatial adiabatic passage of a Bose-Einstein condensate. In: Physical Review A, 2016, vol. 94, iss. 5, pp. 053606. DOI: 10.1103/PhysRevA.94.053606.

17. Wang B., Zhang H., Chen Y., Tan L. Self-trapping and tunneling of Bose-Einstein condensates in a cavity-mediated triple-well system. In: The European Physical Journal D, 2017, vol. 71, pp. 56. DOI: 10.1140/epjd/e2017-70647-3.

18. McCormack G., Nath R., Li W. Nonlinear dynamics of Rydberg-dressed Bose-Einstein condensates in a triple-well potential. In: Physical Review A, 2020, vol. 102, iss. 6, pp. 063329. DOI: 10.1103/PhysRevA.102.063329.

19. Muller D., Anderson D. Z., Grow R. J., Schwindt P. D., Cornell E. A. Guiding neutral atoms around curves with lithographically patterned current-carrying wires. In: Physical Review Letters, 1999, vol. 83, iss. 25, pp. 5194. DOI: 10.1103/PhysRevLett.83.5194.

20. Cassettari D., Hessmo B., Folman R., Maier T., Schmiedmayer J. Beam splitter for guided atoms. In: Physical Review Letters, 2000, vol. 85, iss. 26. P. 5483. DOI: 10.1103/PhysRevLett.85.5483.

21. Leanhardt A. E., Chikkovtur A. P., Kielpinski D., Shin Y., Gustavson T. L., Ketterle W., Pritchard D. E. Propagation of Bose-Einstein condensates in magnetic waveguide. In: Physical Review Letters, 2002, vol. 89, iss. 4, pp. 040401. DOI: 10.1103/PhysRevLett.89.040401.

22. Wang Y.-J., Anderson D. Z., Bright V. M., Cornell E. A., Diot Q., Kishimoto T., Prentiss M., Saravanan R. A., Segal S. R., Wu S. Atom Michelson interferometer on a chip using a Bose-Einstein condensate. In: Physical Review Letters, 2005, vol. 94, iss. 9, pp. 090405. DOI: 10.1103/PhysRevLett.94.090405.

23. Shin Y., Saba M., Pasquini T. A., Ketterle W., Pritchard D. E., Leanhardt A. E. Atom interferometry with Bose-Einstein condensates in a double-well potential. In: Physical Review Letters, 2004, vol. 92, iss. 5, pp. 050405. DOI: 10.1103/PhysRevLett.92.050405.

24. Stickney J. A., Anderson D. Z., Zozulya A. A. Transistorlike behavior of a Bose-Einstein condensate in a triple-well potential. In: Physical Review Letters A, 2007, vol. 75, iss. 1, pp. 013608. DOI: 10.1103/PhysRevA.75.013608.

25. Caliga S. C., Straatsma C. J. E., Anderson D. Z. Transport dynamics of ultracold atoms in a triple-well transistor-like potential. In: New Journal of Physics, 2016, vol. 18, iss. 2, pp. 025010. DOI: 10.1088/1367-2630/18/2/025010.

26. Vasilieva O. F., Zingan A. P. [Temporary evolution of bose-condensed atoms in a threewell symmetric chain trap]. In: Vestnik Moskovskogo gosudarstvennogo oblastnogo universiteta. Seriya: Fizika-Matematika [Bulletin of the Moscow Region State University. Series: Physics and Mathematics], 2021, no. 1, pp. 27–38. DOI: 10.18384/2310-7251-2021-1-27-38.

27. Wilsmann K. W., Ymai L. H., Tonel A. P., Linkes J., Foerster A. Control of tunneling in a atomtronics switching device. In: Communications Physics, 2018, vol. 1, pp. 91. DOI: 10.1038/s42005-018-0089-1.

28. Tonel A. P., Ymai L. H., Wittmann K., Foerster A., Links J. Entangled states of dipolar bosons generated in a triple-well potential. In: SciPost Physics Core, 2020, vol. 2, pp. 003. DOI: 10.21468/SciPostPhysCore.2.1.003.


Review

Views: 100


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)