Solution of a mixed boundary value problem for the Moisil–Teodoresku system in an infinite layer
https://doi.org/10.18384/2310-7251-2022-2-6-16
Abstract
Aim. The purpose of the paper is to find exact solutions of a mixed boundary value problem for a system of Moisil–Teodorescu equations in an infinite layer.
Methodology. The paper considers mixed boundary value problems for the Moisil–Teodorescu system of equations in a layer and for the Cauchy–Riemann system in a strip. These problems are reduced to mixed Dirichlet–Neumann boundary value problems for the Laplace equation in a layer and in a strip, respectively, whose explicit solutions were previously obtained by the authors using the Fourier transform of generalized functions of slow growth.
Results. Exact solutions of mixed boundary value problems for the Moisil–Teodorescu system and for the Cauchy–Riemann system are obtained, which are written as convolutions of rapidly decreasing, infinitely differentiable functions (kernels) with boundary functions that are considered to be generalized functions of slow growth. If the boundary functions are ordinary functions of slow growth, then the solutions are written using integral formulas, which can be considered analogous to the Keldysh–Sedov formulas. In particular, if the boundary functions are polynomials, then the solutions are also polynomials.
Research implications. Exact solutions of mixed boundary value problems for the Moisil–Teodorescu system and for the Cauchy–Riemann system are obtained.
About the Authors
O. D. AlgazinRussian Federation
Cand. Sci. (Phys.-Math.), Assoc. Prof., Department of Computational Mathematics and Mathematical Physics
ul. 2-ya Baumanskaya 5, stroenie 1, Moscow 105005
A. V. Kopaev
Russian Federation
Anatoliy V. Kopaev – Cand. Sci. (Phys.-Math.), Assoc. Prof., Department of Higher Mathematics
ul. 2-ya Baumanskaya 5, stroenie 1, Moscow 105005
References
1. Moisil G. C., Theodorescu N. Fonctions holomorphes dans l’espace. In: Buletinul Societătii de Ştiinţe din Cluj, 1931, Tomul VI, pp. 177–194.
2. Gakhov F. D. Kraevye zadachi [Boundary value problems]. Moscow, Nauka Publ., 1977. 640 p.
3. Muskhelishvili N. I. Singulyarnye integralʹnye uravneniya [Singular integral equations]. Moscow, Nauka Publ., 1968. 512 p.
4. Keldysh M. V., Sedov L. I. [Efficient solution of some boundary value problems for harmonic functions]. In: Doklady AN SSSR [Reports of the Academy of Sciences of the USSR], 1937, vol. 16, no. 1, pp. 7–10.
5. Bitsadze A. V. Osnovy teorii analiticheskikh funktsii kompleksnogo peremennogo [Fundamentals of the theory of analytic functions of a complex variable]. Moscow, Nauka Publ., 1984. 320 p.
6. Bitsadze A. V. Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka [Boundary value problems for second-order elliptic equations]. Moscow, Nauka Publ., 1966. 204 p.
7. Soldatov A. P. [On the Schwarz problem for the Moisil–Teodoresco system]. In: Itogi nauki i tekhniki. Sovremennaya matematika i ee prilozheniya. Tematicheskie obzory [Journal of Mathematical Sciences. Results of science and technology. Modern mathematics and its applications. Subject reviews], 2020, vol. 188, pp. 3–13. DOI: 10.36535/0233-6723-2020-188-3-13.
8. Polkovnikov A. N., Tarkhanov N. [A Riemann–Hilbert problem for the Moisil–Teodorescu system]. In: Matematicheskie Trudy [Siberian Advances in Mathematics], 2018, vol. 21, no. 1, pp. 155–192. DOI: 10.17377/mattrudy.2018.21.107.
9. Algazin O. D., Kopayev A. V. [Solution of the mixed boundary value problem for Laplace equation in a multidimensional infinite layer]. In: Vestnik Moskovskogo gosudarstvennogo tekhnicheskogo universiteta im. N. E. Baumana. Seriya: Estestvennye nauki [Herald of the Bauman Moscow State Technical University. Series Natural Sciences], 2015, no. 1, pp. 3–13. DOI 0.18698/1812-3368-2015-1-3-13.
10. Vladimirov V. S. Obobshchennye funktsii v matematicheskoi fizike [Generalized Functions in Mathematical Physics]. Moscow, Nauka Publ., 1979. 320 p.
11. Algazin O. D. [Polynomial Solutions of the Boundary Value Problems for the Poisson Equation in a Layer]. In: Matematika i matematicheskoe modelirovanie [Mathematics and Mathematical Modeling], 2017, no. 6, pp. 1–18. DOI: 10.24108/mathm/0517.0000082.