Modeling of the scattering of sunlight by a drop
https://doi.org/10.18384/2310-7251-2022-1-52-62
Abstract
Aim. The purpose is to reveal the features of the interaction of visible light with transparent inhomogeneities (droplets) in the atmosphere under isothermal conditions.
Methodology. The intensity of the incident radiation is limited by the intensity of daylight. In this case, the interaction of radiation with a drop is limited by elastic scattering (Rayleigh scattering). Two limiting cases of the interaction of light with a drop are considered: the approximation of ray (geometric) optics and wave optics in the Rayleigh scattering approximation. This makes it possible to study the effect of droplet sizes on light scattering depending on the wavelength.
Results. The dependence of scattering on the size of the droplet and on the entrance of radiation into the droplet is investigated within the limits of the beam optics and the accepted intensity. In the framework of Rayleigh scattering, the known dependences of the scattering intensity on the wavelength of light and the radius of the drop are realized.
Research implications. Within the accepted conditions of interaction of light with a (transparent) drop of water, the models considered (the ray optics approximation and the Rayleigh scattering approximation) revealed the dependence of scattered light on the size and shape of droplets, and also confirmed the characteristic dependences of the scattering intensity on the wavelength of light and the radius of the drop.
About the Authors
E. MetalnikovaRussian Federation
Elizaveta Dmitrievna Metalnikova, student
Faculty of Physics and Mathematics
2nd year
141014
ulitsa Very Voloshinoi 24
Moscow Region
Mytishchi
I. Konstantinova
Russian Federation
Elizaveta Dmitrievna Metalnikova, student
Faculty of Physics and Mathematics
2nd year
141014
ulitsa Very Voloshinoi 24
Moscow Region
Mytishchi
E. Kalashnikov
Russian Federation
Evgeny Vladimirovich Kalashnikov, Doctor of Physical and Mathematical Sciences, Professor
Department of Computational Mathematics and Methods of Teaching Computer Science
141014
ulitsa Very Voloshinoi 24
Moscow Region
Mytishchi
References
1. Arnol'd V. I. Matematicheskoye ponimaniye prirody [Mathematical understanding of nature]. Moscow, Moscow Center for Continuous Mathematical Education Publ., 2011. 144 p.
2. Datsyuk V. V., Izmaylov I. A. [Optics of microdroplets]. In: Uspekhi fizicheskikh nauk [Advances in Physical Sciences], 2001, vol. 171, no. 10, pp. 1117–1129. DOI: 10.3367/ufnr.0171.200110m.1117.
3. Kuptsov V. D., Kyandzhetsian R. A., Katelevskiy V. Ya., Valyukhov V. P. [Light scattering by aerosol particles in gas analyzers based on molecular condensation nucleus effect]. In: Nauchno-tekhnicheskiye vedomosti Sankt-Peterburgskogo gosudarstvennogo politekhnicheskogo universiteta. Seria: Informatika. Telekommunikatsii. Upravleniye [St. Petersburg Polytechnical University Journal. Computer Science. Telecommunication and Control Systems], 2011, no. 1 (115), pp. 178–186.
4. Mayyer V. V. Kapli. Strui. Zvuk. Uchebnyye issledovaniya [Drops. Jets. Sound. Educational research] Moscow, FIZMATLIT Publ., 2008. 376 p.
5. Mel'nikova I. N. [Limits of applicability of the theory of scattering in calculations in the cloud]. In: Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa [Current problems in remote sensing of the Earth from space], 2008, vol. 5, no. 1, pp. 491–496.
6. Nussentsveyg H. [The theory of the rainbow]. In: Uspekhi fizicheskikh nauk [Advances in Physical Sciences], 1978, vol. 125, no. 3, pp. 527–547. DOI: 10.3367/UFNr.0125.197807e.0527.
7. Sobel'man I. I. [On the theory of light scattering in gases]. In: Uspekhi fizicheskikh nauk [Advances in Physical Sciences], 2002, vol. 172, no. 1, pp. 85–90. DOI: 10.3367/UFNr.0172.200201e.0085.
8. Tarasov L. V., Tarasova A. N. Besedy o prelomlenii sveta [Conversations about the refraction of light]. Moscow, Nauka Publ,, 1982. 175 p.
9. Khvostikov I. A. [Theory of Light Scattering and Its Application to Problems of Atmospheric and Fog Transparency]. In: Uspekhi fizicheskikh nauk [Advances in Physical Sciences], 1940, vol. 24, no. 2, pp. 165–227. DOI: 10.3367/UFNr.0024.194006a.0165.
10. van de Hulst H. K. Rasseyaniye sveta malymi chastitsami [Light Scattering by Small Particles]. Moscow, Inostrannaya literatura Publ., 1961. 536 p.
11. Abud M. M. Measure of Backscatter for small particles of atmosphere by lasers // Journal of Physics: Conference Series. 2018. Vol. 1003, IBN Al-Haitham First International Scientific Conference (13–14 December 2017, Baghdad, Iraq). P. 012079. DOI: 10.1088/1742-6596/1003/1/012079.
12. Droplet sizing in spray flame synthesis using wideangle light scattering (WALS) / Aßmann S., Münsterjohann B., Huber F. J. T., Will S. // Applied Physics B. 2020. Vol. 126. Iss. 5. P. 92. DOI: 10.1007/s00340-020-07443-2.
13. Chew W. C. Lectures on Electromagnetic Field Theory. USA: Purdue University, 2020. 483 p.
14. Light scattering by microdroplets of water and water suspensions / Jakubczyk D., Zientara M., Derkachov G., Kolwas K., Kolwas M. // Proceedings of SPIE. 2005. Vol. 5849. Fifth Workshop on Atomic and Molecular Physics. DOI: 10.1117/12.629464.
15. Mätzler C. Mie Scattering With and Without Diffraction: Research Report No. 2004-02. Institute of Applied Physics, University of Bern [Электронный ресурс]. URL: https://boris.unibe.ch/146548/1/835.pdf (дата обращения: 10.12.2021)
16. Nousiainent T. Scattering of Light by Raindrops with Single-Mode Oscillations // Journal of Atmospheric Sciences. 2000.Vol. 57. No. 6. P. 789–802. DOI: 10.1175/1520-0469(2000)057<0789:SOLBRW>2.0.CO;2.
17. Park S., Sung J, Chang T. Characterization of Spherical Particles by Light Scattering // Bulletin of the Korean Chemical Society. 1991. Vol. 12. No. 3, P. 322–328.
18. Mean path length invariance in multiple light scattering / Savo R., Pierrat R., Najar U., Carminati R., Rotter S., Gigan S. // Science. 2017. Vol. 358. Iss. 6364. P. 765–768. DOI: 10.1126/science.aan4054.