A non-newtonian flow of a magnetorheological fluid
https://doi.org/10.18384/2310-7251-2022-1-16-25
Abstract
Aim. The paper considers the rheological behavior of a magnetorheological fluid obtained on the basis of magnetite particles in an ionic liquid.
Methodology. Use is made of an approzimation of the experimental data by the equations of the structural rheological model on separate intervals of the shear rate.
Results. The relationship between the coefficients of rheological equations and the nature of the structure of a magnetite suspension in an external magnetic field is demonstrated.
Research implications. Equations are proposed that are capable of approximating experimental data on separate intervals of the shear rate corresponding to a certain structural state of a magnetorheological fluid.
About the Authors
M. VekovishchevRussian Federation
Mikhail P. Vekovishchev, Cand. Sci. (Phys.-Math.), Assoc. Prof.
Department of Physics and Chemistry
14041
30 ulitsa Zelyonay
Moscow region
Kolomna
E. Kirsanov
Russian Federation
Evgeny A. Kirsanov, Cand. Sci. (Phys.-Math.), Assoc. Prof.
Department of Physics and Chemistry
14041
30 ulitsa Zelyonay
Moscow region
Kolomna
O. Krivoshchapova
Russian Federation
Olga V. Krivoshchapova, Senior lecturer
Department of Physics and Chemistry
14041
30 ulitsa Zelyonay
Moscow region
Kolomna
References
1. Vekas I. Ferrofluids and Magnetorheological Fluids In: Advances in Science and Technology, 2008, vol. 54, pp. 127-136. DOI: 10.4028/www.scientific.net/AST.54.127
2. Bibik E. E. Effects of particle interaction during the flow of ferrofluid in a magnetic field / E. E. Bibik // Magnetic hydrodynamics. - 1973. – Vol. 36. No. 6. Pp. 25-32
3. Shulman Z. P. Magneto-rheological effect / Z. P. Shulman, V. I. Kordonsky. – Minsk: Science and Technology, 1982. – 184 p.
4. Suryavanshi Ravishankar, Rayappa Mahale. A study on magneto rheological fluids and their applications // International Research Journal of Engineering and Technology (IR-JET), 2015. Vol. 2. Iss. 4. P. 2022-2028
5. Preparation of well-dispersed magnetorheological Fluids and effect of dispersion on their magnetorheological properties // Lopez-Lopez M. T., Kuzhir P., Bossis G., Mingalyov P. // Rheologica Acta. 2008/ Vol. 47. P. 747-796. DOI: 10.1007/s00397-008-0271-6
6. Aspects Concerning the Fabrication of Magnetorheological Fluids Containing High Magnetization FeCo Nanoparticles / Gutierrez J., Vadillo V., Gomez A., Berasategi J., Insausti M., Gil de Muro I., Bou-Ali M. M. // Fluids. 2021. Vol. 6. Iss. 3. P. 132-143. Doi: 10.3390/fluids6030132
7. Magneto Mechanical Properties of Iron Based MR Fluids / Premalatha S. E., Chokkalingam R., M. Mahendran M., Rich J. P., Patrick S., Doyle P. S., McKinley G. H. // American Journal of Polymer Science. 2012. Vol. 2. Iss. 4. P. 50-55. Doi: 10.5923/j.ajps.20120204.01
8. Magnetorheology in an aging, yield stress matrix fluid / Rich J. P., Doyle P. S., McKinley G. H. // Rheologica Acta. 2012. Vol. 51. Iss. 7. P. 50-55. Doi: 10.1007/s00397-012-0632-z
9. An Experimental evaluation of pre-yield and post-yield rheologikal models of magnetic field dependent smart materials / Mohammadi N., Mahjoob M. J., Kaffashi B., Malakooti S. // Journal of Mechanical Science and Technology. 2010. Vol. 24. Iss. 9. P. 1829-1837. DOI: 10.1007/s12206-010-0607-x.
10. Kirsanov E. A., Matveenko V. H. Non-Newtonian flow of dispersed, polymer and liquid crystal systems. Structural approach: monograph M.: Technosphere, 2016. 384 p.