Preview

Bulletin of State University of Education. Series: Physics and Mathematics

Advanced search

LOW-TEMPERATURE HEAT CAPACITY OF MATTER WITH FRACTAL DIMENSION OF VIBRATIONAL SPECTRA

Abstract

According to common point of view, the temperature dependence С(Т) of the lattice heat capacity of solid bodies in the temperature range T → 0 should have a region corresponding to the so-called Debye limiting law С(Т) ~ T3. This law should be obeyed regardless of the atomic (molecular) structure and type of chemical bonding in solid bodies. This paper shows that this is true, if it is assumed that the frequency spectrum of the investigated body is continuous and varies in the range of 0 ≤ ω ≤ ω max (model of infinite wavelength spectrum of the crystal), and the exponent of its dimensions varies in the range of 1 ≤ df ≤ 3. This model has been successfully applied during the past century studying of macroscopic bodies, but it is practically useless for clusters and nanostructures. In the general case, i.e. outside this range, when df < 1 or df > 3, and with finite of the both sides spectrum, the temperature change of the lattice heat capacity has a different nature.

About the Authors

V. M. Kuznetsov
D. Mendeleyev University of Chemical Technology of Russia
Russian Federation


K. B. Tereshkina
Semenov Institute of Chemical Physics, Russian Academy of Sciences
Russian Federation


References

1. Кузнецов В.М., Хромов В.И. О существовании макро и наноструктур с фононными спектрами малой фрактальной размерности. // ПЖТФ. 2012. Т. 38. № 11. С. 11-18.

2. Байков Ю.А., Кузнецов В.М. Физика конденсированного состояния. М.: Бином. Лаборатория знаний, 2011. 293 с.

3. Тарасов В.В. Проблемы физики стекла. М.: Стройиздат, 1979. 256 с.

4. Wang Y., Huang X., Shepler B., Braams B.C. and Bowman J.M. Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer // J. Chem. Phys. 2011. T. 134. C. 94.

5. Kozubek A., Tyman J.H.P. Resorcinolic Lipids, The Natural Non-isoprenoic Amphiphiles and Their Biological Activity. // Chem. Rev. 1999. T. 99. № 1. C. 1-26.

6. Байков Ю.А., Кузнецов В.М. Квантовая механика. М.: Бином. Лаборатория знаний, 2013. 296 с.

7. Granovsky A.A., Firefly version 7.1.G, 7.02.15. [электронный ресурс]. URL: http://classic.chem.msu.su/gran/firefly/index.html

8. Изотов А.Д., Шебершнева О.В., Гавричев К.С. Фрактальная модель низко - температурной теплоемкости твердых тел // Тезисы Всероссийской конференции по термическому анализу и калориметрии. Казань. 1996. С. 200. ISSN 2072-8387 | Вестник МГОУ. Серия: Физика-Математика ( 2015 / № 1

9. Вундерлих Б., Бауэр Г. Теплоёмкость линейных полимеров. М.: Мир, 1972. 104 с.

10. Кузнецов В.М., Хромов В.И. Фрактальное представление теории Дебая для исследования теплоемкости макро- и наноструктур. // ЖТФ. 2008. Т. 78. № 11. С. 11-18.

11. Olson J.R., Topp K.A., Pohl R.O. Specific Heat and Thermal Conductivity of Solid Fullerenes // Science. 1993. T. 259. C. 1145-1148.

12. Михальченко В.П. Об эффективных величинах температур Дебая фуллерита С60. // ФТТ. 2010. T. 52. C. 1444-1452.

13. Kuznetsov V.M., Tereshkina K.B. Debye Limiting Law Violation in Clusters and Nanostructures. // Proceedings of the International Conference Nanomaterials: Applications and Properties. 2013. V.2. N. l.P. 51.


Review

Views: 75


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2949-5083 (Print)
ISSN 2949-5067 (Online)