УДК 539

DOI: 10.18384/2310-7251-2020-2-118-127

ВЛИЯНИЕ МАГНИТНОГО ВЗАИМОДЕЙСТВИЯ НА СПЕКТР МАСС ЭЛЕМЕНТАРНЫХ ЧАСТИЦ

Самсоненко Н. В.1, Ндахайо Ф.2, Алибин М. А.1

- ¹ Российский университет дружбы народов 117198, г. Москва, ул. Миклухо-Маклая, д. 8, Российская Федерация
- ² Руандийский университет КК737, г. Кигали, Джикондо-стрит, Р.О. Вох 4285, Руанда

Аннотация.

Цель работы — показать важность учёта магнитного взаимодействия для объяснения спектра масс элементарных частиц.

Процедура и методы исследования. Исследование основано на идеях Барута о критическом влиянии магнитных сил для объяснения свойств сильного взаимодействия.

Результаты исследования. Показано, что в рамках модели Барута этот подход даёт возможность рассматривать огромное количество элементарных частиц (около 400) как возбужденные состояния малого числа связанных фундаментальных частиц (e, p, v) за счёт магнитного взаимодействия.

Теоретическая и практическая значимость. Результаты исследования могут внести заметный вклад в классическую теорию электромагнетизма, и предоставить возможность лучше понять основы квантовой механики.

Ключевые слова: спектр масс, квантование масс, формула Барута, формула Коидэ, формула Варламова, аномальный и нормальный магнитные моменты частиц

INFLUENCE OF THE MAGNETIC INTERACTIONS ON THE MASS SPECTRUM OF ELEMENTARY PARTICLES

N. Samsonenko¹, F. Ndahayo², M. Alibin.¹

- ¹ Peoples' Friendship University of Russia ul. Miklukho-Maklaya 6, 117198 Moscow, Russian Federation
- ² University of Rwanda Gikondo – Street, KK 737, P.O. Box 4285, Kigali, Rwanda

Abstract.

Purpose. Different approaches to the problem of mass quantization are discussed. **Methodology and Approach.** The Barut ideas of crucial influence of magnetic forces for explaining the properties of the strong interaction are considered in details.

© СС ВУ Самсоненко Н. В., Ндахайо Ф., Алибин М. А., 2020.

Results. It is shown that this approach gives a possibility to consider the enormous number of elementary particles (about 400) as the excited states of stable fundamental particles (e, p, v), bounded by magnetic interactions.

Theoretical and Practical implications. The results of the study make a great contribution to the theory of electromagnetism and help better understand the fundamentals of quantum mechanics. **Keywords:** mass spectrum, mass quantization, Barut formula, Koide formula, Varlamov formula, anomalous and normal magnetic moments of particles.

1. Введение

Описание спектра масс наблюдаемых элементарных частиц включено в список Гинзбурга из 30 наиболее важных нерешённых проблем теоретической физики [1]. Существует множество подходов к его решению: групповые методы, основанные на SU (N)-симметрии (Гелл-Манн); динамический (А. Барут); реляционный (Ю. С. Владимиров); геометрический (С. В. Болохов, Ю. С. Владимиров) и многие другие. Получены интересные формулы для масс лептонов и адронов.

Одним из людей, «заложивших фундамент», был Й. Намбу [2], идея которого заключалась в том, чтобы связать массы всех известных в то время элементарных частиц с постоянной тонкой структуры. А. Барут был также сторонником этой идеи, и в 1979 г. получил формулу в виде эмпирической зависимости, связанной с массами лептонов [3]:

$$m_n = m_e \left(1 + \frac{3}{2\alpha} \sum_{k=0}^n k^4 \right),$$
 (1)

где $m_{\rm B}$ – масса электрона, α – постоянная тонкой структуры.

Эта формула хорошо согласуется с наблюдаемыми массами лептонов. Например, для n=0 мы получаем массу электрона $m_{\rm B}^{\rm TBOP}=0,510999$ МэВ ($m_{\rm B}^{\rm PKCII}=0,510999$ МэВ); для n=1 – масса мюона $m_{\rm L}^{\rm TBOP}=105,549$ МэВ ($m_{\rm L}^{\rm PKCII}=105,658$ МэВ); для n=2 – масса тауона $m_{\rm L}^{\rm TBOP}=1786,155$ МэВ ($m_{\rm L}^{\rm PKCII}=1776,822$ МэВ). При значении n=3 предсказывается четвёртый лептон с массой 10293,711 МэВ, который ещё не наблюдался. Чуть позже японский физик Ёсио Коидэ обнаружил следующую взаимосвязь между массами лептонов [4]:

$$m_e + m_\mu + m_\tau = \frac{2}{3} \left(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau} \right)^2.$$
 (2)

Выражение (2) верно с очень высокой точностью. На основании экспериментальных данных (2016 г.) получено отношение левой части (2) к правой (без учёта коэффициента $\frac{2}{3}$) равное 0,6666605 \pm 0,0000068. Теоретически это соотно-

шение равно 0,666666(6). Несмотря на это, разумного теоретического объяснения формулы (2) пока не получено. Предсказанная по формуле Коидэ масса τ – лептона оказывается $m_{\tau}^{\text{твор}} = 1786,968884 \pm 0,000065$, а экспериментальное значение $m_{\tau}^{\text{эксп}} = 1776,822$. Варламов В. В. [5] также представил свою формулу для масс частиц. Если принять во внимание принцип эквивалентности между массой и энергией, можно утверждать, что формула

$$m = m_e \left(l + \frac{1}{2} \right) \left(i + \frac{1}{2} \right), \tag{3}$$

определяющая массу (энергию состояния), (l, i - циклическое представление группы Лоренца), в некотором смысле аналогична хорошо известному соотношение E = hv, где масса электрона играет роль «кванта массы» $m_{\rm B}$. До настоящего времени трудно отдать предпочтение какому-либо из существующих подходов. По нашему мнению, подход Барута более перспективен, поскольку может позволить нам описать спектр адронного сектора, который значительно богаче по числу наблюдаемых состояний.

2. Методы исследования

С самого начала мы укажем некоторые малоизвестные факты о магнитном взаимодействии.

2.1. Необычные (малоизвестные) свойства магнитных сил

2.1.1. Притяжение возможно при различной ориентации магнитных моментов (см. рис. 1 и рис. 2).

$$\vec{\mu}_1$$
 $\vec{\mu}_2$
 $W_{\text{int}} = -2\frac{\mu_1 \mu_2}{r^3} < 0.$ (4)

Рисунок 1 / Figure 1

Соосная параллельная ориентация магнитных моментов. Coaxial parallel orientation of magnetic moments.

Источник: данные авторов.

$$\overrightarrow{\mu_1} = \frac{\mathbf{0}}{\mathbf{\mu_2}}$$

$$W_{\text{int}} = -\frac{\mu_1 \mu_2}{r^3} < 0. \tag{5}$$

Рисунок 2 / Figure 2

Смещённая антипараллельная ориентация магнитных моментов. Biased antiparallel orientation of magnetic moments.

Источник: данные авторов

2.1.2. Разная зависимость от расстояния:

$$W_{\rm int} \sim \pm \frac{b}{r^2} \pm \frac{c}{r^3} + \frac{d}{r^4}.$$
 (6)

2.1.3. Появление отталкивающего ядра независимо от ориентации $\vec{\mu}$:

$$W_{\rm int} \sim + \frac{\left[\overline{\mu} \times \overline{r}\right]^2}{r^6}.\tag{7}$$

Наличие членов с разными знаками в потенциале взаимодействия позволяет получать для разных частиц с разными массами большое количество потенциальных ям, в которых могут существовать связанные состояния систем частиц и которые могут наблюдаться экспериментально в виде резонансов.

2.2. Формула массы Барута

Чтобы проиллюстрировать эффективность метода Барута, выведем приведённую выше массовую формулу Барута (1) для лептонов [3]. Для частицы массой m с зарядом e, движущейся в поле магнитного диполя μ , имеем:

$$\frac{mv^2}{r} = \frac{e\mu v}{r^3}. ag{8}$$

В нерелятивистском случае может применяться правило квантования Бора-Зоммерфельда:

$$mvr = n\hbar, \quad n = 0, 1, 2, \dots$$
 (9)

Из (9) находим $r = \frac{n\hbar}{mv}$, затем подставляем это выражение в (8) и получаем:

$$v_n = \frac{\hbar^2}{em\mu} n^2. \tag{10}$$

Для кинетической энергии мы имеем выражение:

$$E_n = \frac{mv_n^2}{2} = \frac{\hbar^4}{2e^2mu^2}n^4 = \lambda n^4.$$
 (11)

С другой стороны, формула Намбу для мюона:

$$m_{\mu} = \frac{3}{2\alpha} m_e \tag{12}$$

с добавлением массы покоя электрона имеет вид [2]:

$$m_{\mu} = m_e \left(1 + \frac{3}{2\alpha} \right), \quad n = 1.$$
 (13)

Используя (11) и (13), получаем формулу Барута [3]:

$$m_n = m_e \left(1 + \frac{3}{2\alpha} \sum_{k=0}^{n} k^4 \right). \tag{14}$$

Здесь n=0 для электрона; n=1 для мюона; n=2 для тауона; n=3 для 4-го лептона.

2.3. Основные идеи Барута

Как известно, кварков в природе не существует (до сих пор никто их не наблюдал). Наблюдаемые элементарные частицы (несколько сотен) по Баруту можно описать как связанные состояния небольшого числа действительно стабильных частиц p, e^- , v. Более того, особенности сильных взаимодействий, такие как:

- 1) короткий радиус действия;
- 2) насыщаемость;
- 3) независимость от заряда (изотопическая инвариантность);
- 4) сильная зависимость от ориентации спинов;
- 5) спаривание;
- 6) принцип Паули;
- 7) экспериментально наблюдаемый кварковый потенциал,

$$V(r) = -\frac{a}{r} + br + c \tag{15}$$

могут быть объяснены только электромагнитными силами.

2.4. Уравнение Дирака с электромагнитным взаимодействием

Из уравнения Дирака:

$$(\gamma^{\mu}\partial_{\mu}+m)\Psi=0, \tag{16}$$

описывающего свободную частицу, можно получить расширенное уравнение Дирака для заряженной частицы, взаимодействующей с внешним электромагнитным полем в **два этапа**.

1. Удлинение производных $\partial_{\mu} \to \partial_{\mu}$ – ieA_{μ} приводит к появлению дополнительных членов:

$$\mu_n \rho_3 \left(\overline{\sigma} \cdot \overline{H} \right) + \mu_n \rho_1 \left(\overline{\sigma} \cdot \overline{E} \right) \tag{17}$$

в операторе Гамильтона, где μ_n – нормальный магнитный дипольный момент заряженной частицы.

2. Для нейтральной частицы с аномальным магнитным дипольным моментом (такой как нейтрон) необходимо добавить в правой части уравнения Дирака член Паули:

$$0 \to \mu_a F_{\mu\nu} \sigma^{\mu\nu} = \mu_a \rho_3 \left(\overline{\sigma} \cdot \overline{H} \right) + \mu_a \rho_1 \left(\overline{\sigma} \cdot \overline{E} \right), \tag{18}$$

где μ_a – аномальный магнитный дипольный момент.

Приведённые выше **два шага** применительно к электрону, движущемуся вокруг протона, дают радиальное уравнение с эффективным потенциалом следующего вида:

$$V(r) = \pm \frac{a}{r} + \frac{b}{r^2} \pm \frac{c}{r^3} + \frac{d}{r^4}.$$
 (19)

Коэффициенты a, b, c, d получаются автоматически, они фиксируются в модели, и их явный вид будет приведён ниже.

На рис. 3 показаны две потенциальные ямы, полученные для системы «электрон-протон», для заданных значений параметров a, b, c, d которые автоматически фиксируются в модели в результате вышеописанной процедуры (два шага) при включении взаимодействия.

Правая потенциальная яма имеет минимум при $r \approx 10^{-8}$ см. В этой яме главную роль играют члены $-\frac{a}{r} + \frac{b}{r^2}$. Мы называем эту область областью электрического

взаимодействия. Здесь другие члены в (19), связанные с магнетизмом, дают небольшие поправки. Именно в этой яме возникает знакомое нам связанное состояние электрона с протоном – атом водорода. В левой потенциальной яме с минимумом при $r \approx 10^{-13} - 10^{-14}$ см действие магнитных сил является основным, а электрические силы дают лишь небольшие поправки.

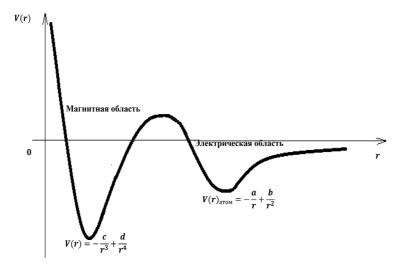


Рисунок 3 / Figure 3

Эффективный потенциал взаимодействия электрона с протоном в модели Барута. The effective interaction potential of an electron with a proton in the Barut model. Источник: [6].

Здесь образование связанных состояний с E>0 возможно благодаря магнетизму, которые в эксперименте будут выглядеть как резонансы. В случае связанной системы двух тяжёлых частиц (например, нейтрон-протон) левая яма

интерпретируется в модели Барута как яма, которая воспроизводит все свойства сильного взаимодействия с небольшими электромагнитными поправками благодаря наличию правой ямы.

2.5. Эффективный потенциал для двух заряженных частиц с нормальными и аномальными магнитными моментами

Рассмотрим две взаимодействующие заряженные частицы с нормальными и аномальными магнитными моментами. В нерелятивистском приближении полный Гамильтониан системы в этом наиболее общем случае выглядит следующим образом [7]:

$$H = \frac{1}{2m_1} \left(\vec{p}_1 - \frac{e_1}{c} \vec{A}_2 \right)^2 + \frac{1}{2m_2} \left(\vec{p}_2 - \frac{e_2}{c} \vec{A}_1 \right)^2 + \frac{e_1 e_2}{|\vec{r}_1 - \vec{r}_2|} + S_{12} \left(\vec{r}_1 - \vec{r}_2 \right). \tag{20}$$

Здесь
$$\vec{A}_1 = \frac{\vec{M}_1 \cdot (\vec{r}_2 - \vec{r}_1)}{\left|\vec{r}_1 - \vec{r}_2\right|^3}$$
, $\vec{A}_2 = \frac{\vec{M}_2 \cdot (\vec{r}_1 - \vec{r}_2)}{\left|\vec{r}_2 - \vec{r}_1\right|^3}$ – векторные потенциалы электро-

магнитного поля, создаваемого одной частицей в точке расположения другой частицы; $\vec{M}=\frac{e\hbar}{2mc}(1+a)\vec{\sigma}$ – полный собственный магнитный момент заряжен-

ной частицы со спином 1/2, пропорциональный магнетону Бора; a – параметр, определяющий величину собственного аномального магнитного момента частицы; $\vec{\sigma}$ – оператор спина частицы; e_i , $m_i(i=1,2)$ – заряды и массы частиц.

Последний член описывает спин-спиновое взаимодействие собственных магнитных моментов частиц. Он обычно записывается как:

$$S_{12}(\vec{r}_1 - \vec{r}_2) = \frac{1}{r^3} \left[\left(\vec{M}_1 \cdot \vec{M}_2 \right) - 3 \left(\vec{M}_1 \cdot \vec{r}_0 \right) \left(\vec{M}_2 \cdot \vec{r}_0 \right) \right], \quad \vec{r}_0 = \frac{\vec{r}}{|\vec{r}|}. \tag{21}$$

После перехода к системе центра масс Гамильтониан принимает вид:

$$H = \frac{\vec{p}^2}{2\mu} + \frac{e_1 e_2}{r} - \frac{1}{r^3} \left[\vec{L} \left(\frac{e_1 \vec{M}_2}{m_1 c} + \frac{e_2 \vec{M}_1}{m_2 c} \right) \right] + \frac{e_1^2}{2m_1 c^2} \left(\frac{\vec{M}_2 \times \vec{r}}{r^3} \right)^2 + \frac{e_2^2}{2m_1 c^2} \left(\frac{\vec{M}_1 \times \vec{r}}{r^3} \right)^2 + \frac{M_1 M_2}{r^3} \left[\vec{S}^2 - 3 \left(\vec{S} \vec{r}_0 \right)^2 \right].$$
 (22)

Здесь
$$\mu = \frac{m_1 + m_2}{m_1 m_2}$$
 – приведённая масса; $\vec{r} = \vec{r}_2 - \vec{r}_1;$ $\vec{p} = \frac{m_1 \vec{p}_1 - m_2 \vec{p}_2}{M};$

$$M=m_1+m_2; \quad \vec{P}=\vec{p}_1+\vec{p}_2; \quad \vec{R}=rac{m_1\vec{r}_1+m_2\vec{r}_2}{M}$$
 — радиус центра масс; $\vec{L}=\vec{r}\cdot\vec{p};$

$$\vec{S} = \frac{1}{2} (\overline{\sigma}_2 + \overline{\sigma}_1)$$
 – оператор полного спина системы из двух частиц.

Формула (22) даёт эффективный потенциал взаимодействия для радиальной функции в виде:

$$V(r) = \frac{b_1}{r} + \frac{b_2}{r^2} + \frac{b_3}{r^3} + \frac{b_4}{r^4}.$$
 (23)

В этом выражении центробежный потенциал $\sim \frac{1}{r^2}$ появился в результате

разделения переменных Лапласиана внутри члена $\frac{\vec{p}^2}{2\mu} = -\frac{\hbar^2 \Delta_{r,\phi,\theta}}{2\mu}$.

Коэффициенты b_1 , b_2 , b_3 , b_4 имеют вид [7]:

$$b_{1} = e_{1}e_{2},$$

$$b_{2} = \hbar^{2}l(l+1),$$

$$b_{3} = \frac{e_{1}e_{2}\hbar}{2m_{1}m_{2}c^{2}} \left[\vec{L} \left(a_{2}\overline{\sigma}_{2} + a_{1}\overline{\sigma}_{1} \right) \right] + \frac{e_{1}e_{2}\hbar}{m_{1}m_{2}c^{2}} \left[\vec{L} \cdot \vec{S} \right] + \frac{e_{1}e_{2}\hbar^{2} \left(1 + a_{2} \right) \left(1 + a_{1} \right)}{4m_{1}m_{2}c^{2}} \left[\vec{S}^{2} - 3\left(\vec{S} \cdot \vec{r}_{0} \right)^{2} \right],$$

$$b_{4} = \frac{e_{1}e_{2}\hbar^{2}}{4m_{1}m_{2}c^{4}} \left(\frac{\left(1 + a_{1} \right)^{2}}{m_{1}} + \frac{\left(1 + a_{2} \right)^{2}}{m_{2}} \right).$$

В общем случае как релятивистские, так и нерелятивистские описания двух взаимодействующих фермионов не позволяют полностью решить задачу аналитически. Заметим, что основным преимуществом релятивистского описания является широкий диапазон допустимых энергий. Однако в результате окончательные уравнения оказываются сложными и аналитически разрешимыми только для небольшого числа потенциальных полей, часто с очень специфическим выбором параметров. Применение нерелятивистских уравнений, естественно, ограничено диапазоном допустимых энергий. В то же время преимуществами нерелятивистского подхода являются относительная простота уравнений и возможность простого анализа на основе известных результатов, а также возможность использовать меньшее число «настраиваемых» параметров.

3. Заключение

Мы кратко изложили основные идеи Барута и дали представление о потенциале взаимодействия двух заряженных частиц с нормальными и аномальными магнитными моментами. Используя общее выражение (20) для Гамильтониана, ряд задач был решён ранее. В случае системы «ер» было предсказано возможное существование небольших атомов Барута-Вижье с размерами $r \approx 10^{-11}$ см [8]. Выражение (20) оказалось эффективным для связанной системы «нейтронпротон» (ядро дейтерия). Оно позволяет простым способом описать основные свойства дейтрона [9]. Например, отсутствие на эксперименте синглетного состояния в дейтроне легко доказывается в модели Барута. В этом случае спины частиц являются антипараллельными (это означает, что магнитные моменты

параллельны из-за того, что
$$\mu_p = +2.7 \frac{e\hbar}{2M_p c}$$
, $\mu_n = -1.9 \frac{e\hbar}{2M_n c}$), и не будет возни-

кать потенциальных ям из-за отталкивания магнитных моментов. Есть надежда, что, используя общую формулу (20) и её релятивистские обобщения, можно получить более точный спектр масс лёгких и тяжёлых частиц.

Статья поступила в редакцию 13.05.2020 г.

ЛИТЕРАТУРА

- 1. Гинзбург В. Л. Какие проблемы физики и астрофизики представляются сейчас особенно важными и интересными (тридцать лет спустя, причем уже на пороге XXI века)? // Успехи физических наук. 1999. Т. 169. № 4. С. 419–441.
- 2. Nambu Y. An empirical mass spectrum of elementary particles // Progress of Theoretical Physics. 1952. Vol. 7. Iss. 5–6. P. 595–596.
- 3. Barut A. O. Lepton mass formula // Physical Review Letters. 1979. Vol. 42. Iss. 19. P. 1251.
- 4. Koide Y. New view of quark and lepton mass hierarchy // Physical Review D. 1983. Vol. 28. Iss. 1. P. 252–254.
- 5. Варламов В. В. Квантование массы и группа Лоренца // Математические структуры и моделирование. 2017. №2 (42). С. 11–28.
- 6. Barut A. O. The magnetic moment of the neutrino // Proceedings of the Telemark Workshop on Neutrino Mass. 1980. P. 130–133 (Published in: eConf C801002).
- 7. Тяхти Д. В. Следствия точного учёта взаимодействия магнитных моментов частиц в модельной задаче двух тел: дис. . канд. физ.-мат. наук. М., 2000. 112 с.
- 8. Samsonenko N. V., Tahti D. V., Ndahayo F. On the Barut-Vigier model of the hydrogen atom // Physics Letters A. 1996. Vol. 220. Iss. 4–5. P. 297–301.
- 9. О следствиях точного учета спин-спинового и спин-орбитального взаимодействий в дейтроне / Самсоненко Н. В., Тяхти Д. В., Ндахайо Ф. // Известия АН СССР. Серия Физическая. 1998. Т. 63. № 1. С. 45.

REFERENCES

- 1. Ginzburg V. L. [What problems of physics and astrophysics seem now to be especially important and interesting (thirty years later, already on the verge of XXI century)?]. In: *Uspekhi fizicheskikh nauk* [Physics-Uspekhi (Advances in Physical Sciences)], 1999, vol. 169, no. 4, pp. 419–441.
- 2. Nambu Y. An empirical mass spectrum of elementary particles. In: *Progress of Theoretical Physics*, 1952, vol. 7, iss. 5–6, pp. 595–596.
- 3. Barut A. O. Lepton mass formula. In: *Physical Review Letters*, 1979, vol. 42, iss. 19, p. 1251.
- 4. Koide Y. New view of quark and lepton mass hierarchy. In: *Physical Review D*, 1983, vol. 28, iss. 1, pp. 252–254.
- 5. Varlamov V. V. [Mass Quantization and Lorentz Group]. In: *Matematicheskie struktury i modelirovanie* [Mathematical structures and modeling], 2017, no. 2 (42), pp. 11–28.
- 6. Barut A. O. The magnetic moment of the neutrino. In: *Proceedings of the Telemark Workshop on Neutrino Mass*, 1980, pp. 130–133 (Published in: eConf C801002).
- 7. Tyakhti D. V. Sledstviya tochnogo ucheta vzaimodeistviya magnitnykh momentov chastits v model'noi zadache dvukh tel: dis. . kand. fiz.-mat. nauk [Consequences of accurate accounting for the interaction of magnetic moments of particles in a two-body model problem: PhD thesis in Physical and Mathematical Sciences]. Moscow, 2000. 112 p.

- 8. Samsonenko N. V., Tahti D. V., Ndahayo F. On the Barut-Vigier model of the hydrogen atom. In: *Physics Letters A*, 1996, vol. 220, iss. 4–5, pp. 297–301.
- 9. Samsonenko N. V., Tahti D. V., Ndahayo F. [On the consequences of the accurate accounting of the "spin-spin" and "spin-orbit" interactions in deuteron]. In: *Izvestiya AN SSSR. Seriya Fizicheskaya* [Proceedings of the USSR Academy of Sciences. Physical Series], 1998, vol. 63, no. 1, p. 45.

ИНФОРМАЦИЯ ОБ АВТОРАХ

Самсоненко Николай Владимирович – кандидат физико-математических наук, доцент Института физических исследований и технологий, Российского университета дружбы народов;

e-mail: nsamson@bk.ru;

Ндахайо Фидель – кандидат физико-математических наук, доцент департамента физики Руандийского университета;

e-mail: f_ndahayo15@yahoo.com;

Алибин Максим Агабегович – аспирант Института физических исследований и технологий, Российского университета дружбы народов;

e-mail: maalibin2017@mail.ru.

INFORMATION ABOUT THE AUTHORS

Nikolai V. Samsonenko – PhD in Physical and Mathematical Sciences, Associate Professor at the Institute of Physical Research and Technology, Peoples' Friendship University of Russia; e-mail: nsamson@bk.ru;

Fidel Ndahayo - PhD in Physical and Mathematical Sciences, Associate Professor at the Department of Physics, Rwanda University;

e-mail: f_ndahayo15@yahoo.com;

Maxim A. Alibin – postgraduate student at the Institute of Physical Research and Technology, Peoples' Friendship University of Russia;

e-mail: maalibin2017@mail.ru.

ПРАВИЛЬНАЯ ССЫЛКА НА СТАТЬЮ

Самсоненко Н. В., Ндахайо Ф., Алибин М. А. Влияние магнитного взаимодействия на спектр масс элементарных частиц // Вестник Московского государственного областного университета. Серия: Физика-Математика. 2020. № 2. С. 118–127.

DOI: 10.18384/2310-7251-2020-2-118-127

FOR CITATION

Samsonenko N. V., Ndahayo F., Alibin M. A. Influence of the magnetic interactions on the mass spectrum of elementary particles. In: *Bulletin of Moscow Region State University. Series: Physics-Mathematics*, 2020, no. 2, pp. 118–127.

DOI: 10.18384/2310-7251-2020-2-118-127