РАЗДЕЛ II. ФИЗИКА

УДК 533.682

М.А. Кудров, Г.Ю. Толкачев, К.А. Зудов, А.А. Рыжов

Московский физико-технический институт (государственный университет) (МФТИ)

ОБ ОДНОМ ПОДХОДЕ К МОДЕЛИРОВАНИЮ ФИЗИЧЕСКИХ ПРОЦЕССОВ АТМОСФЕРЫ В УСЛОВИЯХ ГОРНОГО РЕЛЬЕФА

Работа выполнена в соответствии с договором № 02.С25.31.0017 между ОАО «РСК «МиГ» и Министерством образования и науки РФ об условиях предоставления и использования субсидии на реализацию комплексного проекта по созданию высокотехнологичного производства, выполняемого с участием ФГАОУ ВПО «МФТИ (ГУ)».

Аннотация: Проведено численное моделирование обтекания рельефа в области горного аэродрома. Поставлена и решена краевая задача для расчета вихревого течения в районе горного рельефа. Ключевые слова: горный аэродром, поле завихренности.

M. Kudrov, G.Tolkachev, K. Zudov, A. Ryzhov

Moscow Institute of Physics and Technology (State University)

ONE APPROACH TO THE SIMULATION OF THE PHYSICAL PROCESSES OF THE ATMOSPHERE IN MOUNTAINOUS TERRAIN

Abstract. The numerical simulation of the flow in the mountainous airfield is conducted. The boundary value problem of investigating eddy flow near the mountainous relief is set.

Keywords: mountainous airfield, vorticity field.

1. Постановка задачи расчета

В настоящей работе численно решалась краевая задача для системы уравнений Рейнольдса (RANS – Reynolds Averaged Navier-Stokes) для сжимаемого газа (совершенный газ) с двухпараметрической SST моделью турбулентности для замыкания системы уравнений [1]. Пограничный слой считался полностью турбулентным. Набегающий поток задан граничным условием типа Inlet [2]. Данное условие является условием первого рода, или граничным условием типа Дирихле. Для конкретной задачи ему соответствует задание трех компонент скорости, гладко спадающих до нуля в соответствии с данными по профилю ветра, статической температура и уровня турбулентных пульсаций. На выходной границе условие соответствует неотражающему, для чего вычисляются инварианты Римана [3]. Моделирование произведено в пакете программ ANSYS CFX.

Система уравнений Рейнольдса совместно с гипотезой Буссинеска относительно напряжений Рейнольдса, замкнутая двухпараметрической дифференциальной моделью турбулентности SST, имеет следующий вид:

$$\frac{\partial Q}{\partial t} + \frac{\partial E}{\partial \xi} + \frac{\partial G}{\partial t} + \frac{\partial F}{\partial \zeta} = S$$

Здесь Q — вектор консервативных зависимых переменных задачи. E, G, F — векторы потоков в криволинейной системе координат, S — вектор источников.

Компоненты векторов зависимых переменных и потоков имеют следующий вид:

$$Q_{c} = \begin{pmatrix} \rho \\ \rho u \\ \rho v \\ \rho \omega \\ \rho (e + q^{2}) \end{pmatrix}, S_{c} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, E_{c} = \begin{pmatrix} \rho u \\ \rho u^{2} + p + \frac{2}{3}\rho q^{2} + \tau_{xx} \\ \rho u v + \tau_{xy} \\ \rho u \omega + \tau_{xz} \\ \rho u H + \frac{5}{3}\rho u q^{2} + I_{x} \end{pmatrix},$$

$$G_{c} = \begin{pmatrix} \rho u \\ \rho u \\ \rho u v + \tau_{xy} \\ \rho v \omega + \tau_{yz} \end{pmatrix}, F_{c} = \begin{pmatrix} \rho \omega \\ \rho \omega \\ \rho \omega v + \tau_{xz} \\ \rho \omega v + \tau_{yz} \\ \rho \omega v + \tau_{yz} \\ \rho \omega v + \tau_{yz} \\ \rho \omega w + \tau_{zz} \\ \rho \omega w + \tau_{zz} \\ \rho \omega v + \tau_{zz} \\ \rho \omega w + \tau_{zz} \\ \rho \omega w$$

Здесь р – плотность; $\vec{V}=u\vec{i}+\upsilon\vec{j}+\omega\vec{k}$ (\vec{i} , \vec{j} , \vec{k} – единичные орты декартовой системы координат) – вектор скорости потока, а $V=\sqrt{u^2+\upsilon^2+\omega^2}$ - модуль вектора скорости; р – давление; $e=c_vT+\frac{V^2}{2}$ –

полная энергия на единицу массы газа; $H = e + \frac{p}{\rho} = c_p T + \frac{V^2}{2}$ — полная

энтальпия единицы массы газа для случая идеального газа; c_v и c_p – удельные теплоемкости при постоянном объёме и давлении, соответственно; $\mathbf{q} = \sqrt{k}$ - параметр турбулентности, определяющий масштаб скорости (\mathbf{k} – кинетическая энергия турбулентности). $\mathbf{\tau}$ – это симметричный тензор вязких и турбулентных напряжений, линейно связанный с тензором скоростей деформаций s: $\mathbf{\tau}$ = - ($\mathbf{\mu}$ + $\mathbf{\mu}_t$)s, а сам тензор s имеет вид:

$$s = \begin{pmatrix} 2\frac{\partial u}{\partial x} - \frac{2}{3}div\vec{V} & \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} & \frac{\partial u}{\partial z} + \frac{\partial \omega}{\partial x} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} & 2\frac{\partial v}{\partial y} - \frac{2}{3}div\vec{V} & \frac{\partial v}{\partial z} + \frac{\partial \omega}{\partial y} \\ \frac{\partial u}{\partial z} + \frac{\partial \omega}{\partial x} & \frac{\partial v}{\partial z} + \frac{\partial \omega}{\partial y} & 2\frac{\partial \omega}{\partial z} - \frac{2}{3}div\vec{V} \end{pmatrix}.$$

Вектор теплового потока ${\rm I}={\rm I}_x\vec{i}+{\rm I}_y\vec{j}+{\rm I}_z\vec{k}$ вычисляется по формуле:

$$I = -(\lambda + \lambda_t) \nabla T + \tau \vec{V}.$$

 μ и λ — это коэффициенты молекулярной вязкости (динамической) и теплопроводности, а μ_t и λ_t — соответствующие турбулентные аналогии.

Газ при моделировании считается совершенным, подчиняющимся уравнению состояния Клапейрона-Менделеева. Для вычисления динамического коэффициента вязкости использована формула Сазерленда:

$$\frac{\mu}{\mu_{\infty}} = \frac{1 + \frac{110.4}{T_{\infty}}}{\frac{T}{T_{\infty}} + \frac{110.4}{T_{\infty}}} \cdot \left(\frac{T}{T_{\infty}}\right)^{\frac{3}{2}};$$

молекулярное и турбулентное числа Прандтля принимаются постоянными:

$$Pr = \frac{c_p \mu}{\lambda} = 0.7, Pr_t = \frac{c_p \mu_t}{\lambda_t} = 0.9.$$

Здесь знак (∞) в нижнем индексе обозначает параметры невозмушенного потока.

В качестве граничных условий на стенке ставится условия прилипания, изотермичности поверхности и отсутствия турбулентных пульсаций на подстилающей поверхности. На входной границе задавались постоянная статическая температура, статическое давление, а также профиль ветра, примерно соответствующий экспериментальным данным. Аппроксимация эмпирических данных привела к логарифмической зависимости горизонтальной компоненты скорости, параллельной земли, от расстояния до поверхности. Зависимость имеет следующий вид:

$$U = \begin{cases} 0.9013 \ln(r_w + 1) + 2.4852 \ \text{m/c}, r_w < 200 \ \text{m}, \\ 7.3 \ \text{m/c}, r_w \ge 200 \ \text{m} \end{cases},$$

где $r_{\rm w}$ – расстояние до поверхности земли в метрах.

2. Результаты расчётов

Получено поле течения над рельефом. С гор, как и ожидалось, сходит вихрь, который, при данном направлении ветра, проходит над аэродромом. Модуль скорости в ядре вихря равен \sim 7,5 м/с. На рис.1 изображены поля скорости в различных сечениях. На рис.2 изображены поля завихренности в различных сечениях.

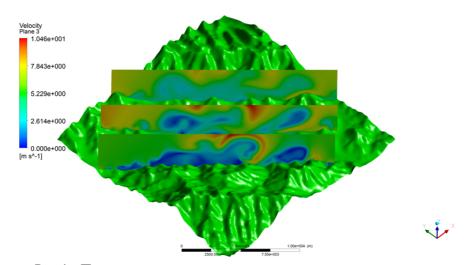


Рис.1 - Поля модуля скорости в различных сечениях

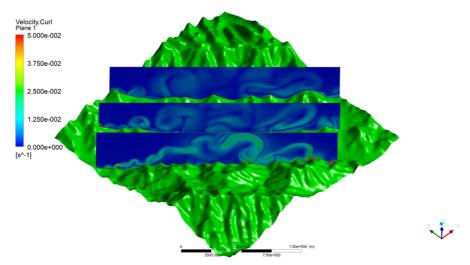


Рис.2 - Поля завихренности в различных сечениях

Для трехмерной визуализации вихревых структур (рис.3) выбраны изоповерхности параметра лямбда-2 [4], являющегося удобным инструментом визуализации вихрей, т.к. позволяет частично отсечь неоднородность пограничного слоя.

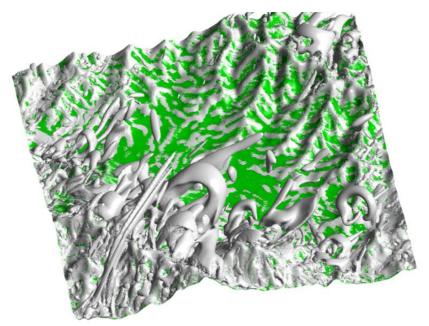


Рис.3 - 3D визуализация вихрей с использованием функции лямбда-2

Уравнение изоповерхности параметра лямбда-2 имеет следующий вид:

$$(\Omega_{ij} \Omega_{ij} - S_{ij} S_{ij}) = const,$$

где Ω_{ij} и S_{ij} — тензоры завихренности и скоростей деформации, соответственно.

На приведенных рисунках, визуализирующих вихревые структуры, образующиеся из-за отрыва пограничного слоя, видно, что их характерный размер (~1 км) существенно больше характерного размера летательных аппаратов (~20 м), поэтому вычисление приращений аэродинамических сил, действующих на летательный аппарат, проводится упрощенным образом. То есть, проведением расчета обтекания аппарата однородным потоком с углом атаки, соответствующим углу наклона скорости в заданной точке в области над рельефом.

3. Краткие выводы

Проведен расчет поля скоростей и завихренности в окрестности горного аэродрома Лех Бакула Кушок Римпочи, Индия. Определено направление ветра, при котором наблюдаются вихри наибольшей интенсивности над взлетно-посадочной полосой аэродрома. Полученные данные могут быть использованы при оценке аэродинамических нагрузок на самолет, совершающий взлет/посадку на данный аэродром. Также полученные данные могут быть использованы на пилотажных стендах для отработки сценариев посадки в горной местности.

ЛИТЕРАТУРА

- Menter F.R., Kuntz M., Langtry R. Ten years of industrial experience with the SST turbulence model. // Turbulence, Heat and Mass Transfer 4 / Ed. by K. Hanjalic, Y. Nagano, M. Tummers. — Begell House, Inc., 2003.
- 2. Toro E. Riemann Solvers and Numerical Methods for Fluid Dynamics, A Practical Introduction, Springer, 2009.
- 3. Ландау Л. Д., Лифшиц Е. М. Теоретическая физика: Учебное пособие. В 10 т. Т. VI. Гидродинамика. 3-е изд., перераб. М.: Наука. Гл. ред. физ-мат. лит., 1986. 736 с.
- 4. J. Jeong and F. Hussain. Copyright © 1995. Journal of Fluid Mechanics. On the Identification of a Vortex. 69-94. 285.