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Abstract. A brief review of a set of ideas which relate gravity, entropy and quantum entan-
glement is given. The key idea is that gravity is an emergent or induced, in Sakharov’s 
sense, phenomenon and it is holographic, as has been suggested by t’Hooft. The low-
energy physics is described by effective equations of some mi- croscopical degrees of free-
dom. It is important that the entanglement entropy of these microscopic constituents across 
a surface is given by the Bekenstein-Hawking entropy formula. It means that all micro-
scopic details are encoded in macroscopic low-energy constants. It is very similar to what 
happens in thermodynamics so that gravity, by following the Verlinde suggestion, may be 
interpreted as an entropic gravity. An explicit realization of this idea appears in a holo-
graphic description of entanglement entropy in conformal field theories. 
Keywords: entropy of quantum entanglement, induced gravity, quantum gravity, quantum 
theories which allow a dual description in terms of gravity 

1. Introduction 
A fundamental problem of the modern cosmology is related to the origin and nature of 

the dark energy. The current observational data indicate that the dark energy may be in a form 
of cosmological constant and, thus, the resolution of the problem requires understanding prop-
erties of the physical vacuum. Due to quantum effects the vacuum can be viewed as a sort of 
media which possesses energy density, pressure, polarization and etc. In a conventional QFT 
the energy of vacuum fluctuations is not defined because of ultraviolet divergences. The prob-
lem of the cosmological constant is that for different natural cutoff parameters (such as elec-
troweak, SUSY, or Planck scales) the vacuum energy is many orders of magnitude higher than 
the cosmological value. This fact may indicate that our present knowledge of fundamental 
physics is too incomplete. 

The aim of this paper is to describe and analyse some ideas which enlarge our vision of 
quantum gravity. All these ideas are connected in a sense that low-energy gravity is considered 
as an emergent or induced gravity and a generalized notion of entropy takes place.  

2. Induced gravity 
The fact that gravity is an emergent phenomenon dates back to ideas of the last century 

suggested by A.D. Sakharov [1] who noticed that the leading part of the one-loop effective  
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action on a curved manifold behaves as an Einstein action 
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with ’induced’ or ’effective’ Newton coupling Geff and a cosmological constant eff 
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where M is a UV cutoff. The induced action (1) also includes higher curvature corrections. 
Constants Geff, eff are analogous the Youngs modulus in the solid state physics, while gravi-
tons are analogous to phonons. In the Sakharov theory the underlying degrees of freedom are 
just different species of relativistic fields. 

In the string theory the same idea is realized in a more sophisticated scheme where low-
energy gravity equations appear from tree-level amplitudes of closed strings. The similarity 
with Sakharov’s approach is that these diagrams can be reinterpreted as one- loop diagrams of 
open strings. 

3. Black hole thermodynamics 
The emergent nature of gravity is supported by properties of black holes. Dynamical laws 

of black holes can be interpreted as laws of thermodynamic systems. The mass of a black hole 
is identified with the energy of the system, the entropy of a black hole is given by the Beken-
stein-Hawking entropy 
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where A(B) is the area of the black hole horizon B. (Here and in what follows we assume that 
the Planck constant and the velocity of light are equal to unity). If we consider, for example, a 
Schwarzschild black hole, it is just an empty space. The problem is what are the degrees of 
freedom which allow one to explain its entropy. 

One of the challenging tasks in quantum gravity is to provide a statistical-mechanical ex-
planation of the Bekenstein-Hawking entropy. A possible source of SBH are quantum correla-
tions of underlying microscopical degrees of freedom across the black hole horizon. In the next 
section we explain why the induced gravity may be a useful guiding idea [2, 3, 4] to understand 
horizon correlations. 

There is an important support of the idea that gravity is an emergent phenomenon. In 
1995 Jacobson [5] made a remarkable observation that the Einstein equations can be derived 
by applying the first law of black hole thermodynamics to local Rindler horizons. This means 
that general laws of thermodynamics are applicable to quantum gravity degrees of freedom. 
Like phonons, gravitons are not fundamental degrees of freedom. They should not be canoni-
cally quantized. 

Another intriguing concept has been suggested by E. Verlinde [6] who argued that gra-
dients of the entropy of fundamental quantum gravity degrees of freedom might determine the 
gradients of the gravitational field. We return to Verlinde’s idea latter. 



24

. . «  - ». 2014.  1  

4. Entanglement entropy 
To understand horizon correlations we introduce the entropy of quantum entanglement. 
Quantum entanglement is a property of quantum systems which is known from early days 

of quantum mechanics. Now this property is well understood, established and it is used in dif-
ferent research areas. An example of entangled states is the following system of two particles, 
each with its spins ’up’ (

i↑| |) or ’down’ (
i↓| ): 
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If the state of the 1st particle cannot be measured, state of the second particle will be the 
mixed one, described by the density matrix 

||Tr
12

ψψρ = ,  (5) 

The trace here is taken over the states of the 1st particle. The degree of entanglement of 
two particles is quantified by an entropy 

2222
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This quantity is also called the entanglement entropy. A simple computation shows that 
S2 = 2 ln2. 

One can generalize this definition to the case of a system of many particles divided onto 
two or more subsystems. One can show that the entanglement entropy is always zero if the 
subsystems are disentangled. In manybody systems, including quantum field theories, entan-
glement entropy S(B) can be introduced for subsystems which are spatially separated by a sur-
face B. Explicit computations show that this entanglement entropy is divergent and it behaves 
in the leading order as 
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where A(B) is the area of B, a  is a cutoff parameter with the dimensionality of a length, D is 

the number of space-time dimensions. If B is the black hole horizon and a  is of the order of 

the Planck length the entropy (7) has the same order of magnitude as the Bekenstein-Hawking 
entropy. 

Thus, the entropy of a black hole may be the entropy of entanglement between quantum 
excitations which live near the horizon, inside and outside [7-9]. These degrees of freedom are 
related to the physics at the Planck scale, they are not conventional low-energy fields. 

To make this explanation complete one has to assume that low-energy gravity action is 
also induced by quantum effects of the Planck degrees of freedom so that, like in Sakharov’s 
approach [2], the Newton coupling G~ a 2 in D = 4. Explicit models of black hole entropy in 

induced gravity are discussed in [3, 4]. 
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5. The world as a hologram 
The idea that gravity might be a holographic theory first appeared in papers by t’Hooft 

[10] and Susskind [11]. Roughly speaking, it asserts that in the presence of quantum gravity 
effects all the information about physics inside a region can be described in terms of a theory 
(one-dimension lower) which is set on a boundary of the region. 

Original arguments presented by t’Hooft are very simple. Suppose we want to under-
stand a possible number of microstates located in a region of a volume  

V = L3. In classical theory this number is determined by the entropy of quanta. One can 
make the entropy larger, for example, by pumping an energy E and increasing the temperature 
T. Thus, one may expect that entropy scales as the volume V, S ~ T3L3. However, one can in-
crease the energy only until the value Emax = L/G when the gravitational radius EG remains 

smaller then the size L of the system. The limiting value for the entropy is ( ) 2/3

max
/~ GLS . 

If E > Emax the system collapses to form a black hole. The entropy of the system will be domi-
nated by the entropy of a black hole S = SBH~L2/G. By taking into account quantum gravity 
degrees of freedom t’Hooft concludes that the entropy scales as the boundary of the region. 
The theory on the boundary whose degrees of freedom contribute to the entropy is called dual 
with respect to the theory in the physical volume (in the bulk). 

The ideas about the holographic nature of quantum gravity are realized explicitly in what 
is known now as AdS/CFT correspondence. The conjecture made Maldacena and other au-
thors [12-14] says that for gravity theories with a negative cosmological constant the dual the-
ories are certain types conformal field theories (CFT’s) one dimension lower than the theory in 
the bulk. (We do not provide here a precise formulation of the Maldacena conjecture. It ap-
peals to the string theory.) Abbreviation ’AdS’ means ’anti-de Sitter’, since solutions in theo-
ries with a negative cosmological constant are asymptotically anti-de Sitter geometries. 

6. Holographic entanglement entropy 
For realistic condensed matter or field systems the entanglement entropy associated to 

spatial separation of the system is a non-trivial function of microscopical parameters. Its calcu-
lation is technically quite involved. Some progress in computations has been achieved either for 
one and two-dimensional spin chains or in case of non-interacting QFT’s. Analytical or numer-
ical computations of the entropy in the regime of strong couplings are not available. 

In 2006 Ryu and Takayanagi [15, 16] by using AdS/CFT correspondence made a re-
markable conjecture regarding entanglement entropy in conformal field theories. If a d-
dimensional CFT admits a dual description in terms of an AdS gravity, the entanglement entro-
py associated with a partition of the CFT space by an entangling surface B is given by the 
Bekenstein-Hawking formula 
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Here 
1+dG  is the higher dimensional Newton coupling and )

~
(BA is the area of a co-

dimension 2 hypersurface B
~

 located in the bulk. B
~

 is defined as minimal (least area) hyper-
surface with the condition that its asymptotic boundary is conformally equivalent to the physi-
cal entangling surface B. 



26

. . «  - ». 2014.  1  

All information about microscopical content of a given CFT is encoded in coupling con-
stants of the bulk AdS graviy. Specification of a quantum state of the CFT is determined by the 
choice of the bulk solution. Ryu-Takayanagi formula (8) passes a number of non-trivial tests. It 
is important that (8) allows one to study entanglement entropy in strongly correlated systems. 

7. Entanglement entropy in quantum gravity 
Let us return now to the question about entanglement of quantum gravity degrees of 

freedom. In case of black holes, when the entangling surface is the black hole horizon, the en-
tanglement entropy seems to be measured by the Bekenstein-Haking formula. What one can 
say about arbitrary entangling surfaces? By taking Ryu-Takayanagi formula (8) as a guide a 
number of arguments have been presented by the author of this paper [17] that the entangle-
ment entropy of fundamental degrees of freedom lying in a constant time slice and spatially 
separated by a surface B is 
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Here G is the Newton coupling and A is the area of B. Equation (9) holds in the semi- 
classical approximation if the low-energy limit of the fundamental theory is the Einstein gravi-
ty. 

As we pointed out earlier, for realistic condensed matter systems the entanglement en-
tropy is a non-trivial function of microscopical parameters. The remarkable implication of (9) is 
that the entanglement entropy in quantum gravity may not depend on a microscopical content 
of the theory, it is determined solely in terms of geometrical characteristics of the surface and 
low-energy gravity couplings. 

Another feature established in [17] is related to the shape of the separating surface. Be-
cause S(B) includes contributions of all fundamental degrees of freedom quantum fluc- tuations 
of the geometry should be taken into account in a consistent way. For static space-times this 
requires that B is minimal surface, i.e. a surface with a least area. 

Quite recently Maldacena and Lewkowycz [18] came to entropy formula (9) in an alter-
native way. They called such entropy generalized gravitational entropy. 

Let us also note that results of [17] have an interesting relation to Verlinde’s entropic 
gravity [6]. The hypothesis of [6] is based on a number of assumptions for so called ‘holo-
graphic screens’ which store an information about fundamental microstates (’bits’) in such a 
way that a related entropy is proportional to the area of the screen. A variational formula for 
the entropy of the screen under the action of a point-like particle is postulated and plays a key 
role in the arguments. If the holographic screens are identified with minimal surfaces the varia-
tional formulas just follow from the properties of minimal surfaces, see [17]. 
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