УДК 532.783

ЖИДКОКРИСТАЛЛИЧЕСКИЕ ЦИАНОЭТИЛОВЫЕ ЭФИРЫ

В. Ф. Петров*, **В. В. Беляев****

* РГУ нефти и газа им. И. М. Губкина 119991, Москва, Ленинский проспект. 65,

** Московский Государственный Областной Университет 105005, Москва, ул. Радио. 10A

Аннотация: Представлены мезоморфные и физико-химические свойства новых жидкокристаллических цианоэтиловых эфиров. Обсуждена связь полученных результатов с молекулярной структурой исследуемых соединений.

Ключевые слова: жидкие кристаллы, молекулярная структура, цианоэтиловые эфиры.

1. Мезоморфные свойства

Для физико-химических исследований и практических приложений мезофаз актуальной задачей остается создание новых жидкокристаллических (ЖК) веществ и исследование зависимости их физических свойств и электрооптических характеристик от молекулярной структуры мезогенов. Такие исследования также стимулируют разработку соответствующих новых физических теорий и моделей.

В продолжение наших работ в области сильно полярных жидких кристаллов для электрооптических устройств [1-8], мы проводим в табл. 1 мезоморфные и физико-химические свойства новых цианоэтиловых эфиров производных бифенила, фенилциклогексана и бициклогексана. Свойства новых веществ сравниваются с соответствующими свойствами циан, цианэтил, цианвинил и цианацетил производных.

Как видно из таблицы, введение мостиковой группы C_2H_4COO между молекулярным остовом и концевой циано группой приводит к уменьшению температуры просветления (температуры фазового перехода нематик-изотропная жидкость T_{NI}), по сравнению с соответствующими параметрами циано производных (соединения 1 и 2, 6 и 7, 11 и 12) и других производных, имеющих метильную, виниловую и ацетиленовую мостиковые группы (соединения 1 и 4,5; 6 и 9, 10; 11 и 14). В то же время новые соединения показывают более высокие (соединения 1 и 3, 6 и 8) и более низкие температуры просветления (соединения 11 и 13), чем соответствующие производные с этиловым мостиком. Эти данные связаны с изменением формы молекул — увеличивается отклонение полярной CN-группы от длинной оси остова молекулы, что приводит к уменьшению нематической термостабильности.

Температура плавления (температура фазового перехода кристалл-нематик T_{CN} или кристалл-смектик T_{SN}) новых веществ больше температур плавления соответствующих производных фенилциклогексила и бициклогексила (соединения **6-10**, **11-14**), а для производных бифенила соединения с виниловым мостиком обладают наибольшими

Таблица 1.

Мезоморфные и физико-химические свойства жидких кристаллов:

C5H11-A-B-X-CN

					, ,			
№	A-B	x	Темп. фаз. переходов, °С	$\epsilon_{\perp}^{\ a}$	Δε ^a	Δn ^a	ν ^a , мм ² c	Лит. -(
ı		COOC ₂ H ₄	Cr 65,3 N (26) I	8,7	11,3	0,183		
2	$\bigcirc\!\!\!-\!\!\!\bigcirc$	_	Cr 23 N 35 I	5,6	14,8	0,204		[3]
		C_2H_4	Cr 66,5 I					[19]
1	$\bigcirc\!$	СН=СН	Cr 80 S 99 N 147,1 I					[20]
;	\bigcirc — \bigcirc	с≡с	Cr 51 N 120,2 I					[20]
i	\bigcirc — \bigcirc	COOC ₂ H ₄	Cr 56,8 N (35) I	8,0	9,2	0,115	150	
,	\bigcirc — \bigcirc	Market .	Cr 30 N 55 I	4,2	13,3	0,130	23	[3]
		C_2H_4	Cr 44,2 S (28) I					[20]
i.	\bigcirc — \bigcirc	СН=СН	Cr 40,6 S 59,5 N 149 I					[20]
0	$\bigcirc\!$	$c \equiv c$	Cr 49,7 N 128,9 I					[20]
1	\bigcirc — \bigcirc	COOC ₂ H ₄	Cr 117,3 N (59) I	6,4	2.8	0,044		
2	\bigcirc — \bigcirc	_	Cr 60 S (43) S (52) N 85 I		4,5	0,060		[3]
3	\bigcirc — \bigcirc	C_2H_4	Cr 9 S 30 S 108,8 I					[21]
4	\bigcirc — \bigcirc	CH ₂	Cr 56,5 S 82,6 I					[22]

 $^{^{\}rm a}$ Вычислено из 10 масс. % раствора в ZLI-1132 при 20 $^{\rm o}{\rm C}$.

температурами плавления среди рассматриваемых веществ. Эти результаты свидетельствуют о влиянии структуры молекулярного остова (бифенил, фенилциклогексил, бициклогексил) на термическую эффективность C_2H_4COO и других мостиковых групп.

2. Статические диэлектрические свойства

Отношение между диэлектрической анизотропией $\Delta \epsilon = \epsilon_{\parallel}$ - ϵ_{\perp} , где ϵ_{\parallel} и ϵ_{\perp} - соответственно, диэлектрические константы, параллельная и перпендикулярная нематическому директору \mathbf{n} ; и молекулярной структурой жидких кристаллов описывается теорией Майера и Мейера [9]:

$$\Delta \varepsilon = NhF/\varepsilon_o \left[\Delta \alpha - F\mu^2 / kT(1 - 3\cos^2 \beta) \right] S, \tag{1}$$

где $h = 3\varepsilon^*/(2\varepsilon^* + 1)$, $\varepsilon^* = (\varepsilon_{\parallel} + 2\varepsilon_{\perp})/3$; $\Delta\alpha = (\alpha_{\parallel} - \alpha_{\perp})$ - анизотропия поляризуемости; F - отклик системы; μ - дипольный момент; β - угол между дипольным моментом и длинной осью молекулы; N - число молекул в единице объема; S - параметр порядка.

Для жидкокристаллических дисплеев, работающих на твист-эффекте, нужны жидкие кристаллы, имеющие наибольшую диэлектрическую анизотропию [10]:

$$U_{th} \sim \pi \left[\kappa / \varepsilon_0 \Delta \varepsilon \right]^{1/2} \tag{2}$$

где κ параметр упругости, являющийся комбинацией коэффициентов упругости Фрэнка, $\kappa = [K_{11} + (K_{33} - 2K_{22})/4]$.

В ЖК с положительной диэлектрической анизотропией дипольный момент направлен вдоль длинной молекулярной оси, в то время как в ЖК с отрицательной диэлектрической анизотропией дипольный момент ориентирован перпендикулярно длинной молекулярной оси. С точки зрения молекулярного дизайна положительное значение $\Delta \epsilon$ может быть достигнуто введением в молекулярную структуру полярных концевых и мостиковых групп. Положение и ориентация мостиковых групп должны быть выбраны таким образом, чтобы их дипольные моменты увеличивали общий дипольный момент и, следовательно, диэлектрическую анизотропию, которая в свою очередь уменьшает управляющее напряжение (формула 2). В таблице 1 представлены значения диэлектрической анизотропии жидких кристаллов, экстраполированные из растворов при 20°C. Как было показано в [10], эти экстраполяции не эффективны, однако это единственная возможность для грубой оценки диэлектрических и оптических свойств не жидкокристаллических соединений, смектических ЖК и ЖК с узким нематическим интервалом. Как видно из табл. 1, введение мостиковой группы C₂H₄COO в структуру ЖК приводит к увеличению перпендикулярной составляющей диэлектрической анизотропии и уменьшению $\Delta \varepsilon$, что вызвано соответствующим вкладом дипольного момента СОО группы (соединения 1 и 2, 6 и 7, 11 и 12).

3. Оптические свойства

Отношение между показателем преломления и электрической поляризацией определяется как [11, 12]:

$$(n^{*2} - 1) / (n^{*2} + 2) = N\alpha^* / 3\varepsilon_0$$
 (3)

где средняя поляризуемость $\alpha^* = (\alpha_{//} + 2\alpha_{/})/3$; средний показатель преломления $n^{*2} = (n_e^2 + 2n_o^2)/3$; n_o это обыкновенный и n_e это необыкновенный показатели преломления. Из формулы 3 и предыдущего параграфа следует, что соединения, имеющие большую индуцированную поляризуемость их π -электронных систем (например, циано производные) показывают оптическую анизотропию $\Delta n = n_e - n_o$, которая существенно больше, чем оптическая анизотропия соответствующих цианоэтиловых эфиров (соединения 1 и 2, 6 и 7, 11 и 12).

4. Вязкость

Как известно, нематические жидкокристаллические материалы для дисплеев должны иметь малую вязкость для обеспечения приемлемых времен переключения дисплеев [10, 13]:

$$\tau_{off} = \gamma_I d^2 / \pi^2 K_I \,, \tag{4}$$

$$\tau_{on} \sim \gamma_1 d^2 / (U^2 - U^2_{th})$$
, (5)

где d - толщина ЖК слоя, U - напряжение, $U_{\rm th}$ - пороговое напряжение электрооптического эффекта. Вращательная вязкость γ_1 нематического ЖК это коэффициент диссипации энергии, описывающий степень переориентации директора ЖК [14]. Величина вращательной вязкости зависит от молекулярной структуры, междумолекулярной ассоциации и температуры [15, 16]: с увеличением температуры вязкость уменьшается [14-18]. В табл.1 приведены данные по кинематической вязкости ЖК v. В [23] показано, что величины γ_1 и v коррелируют при изменении молекулярной структуры соединений. Как видно из табл. 1, цианоэтиловые эфиры с более длинной концевой группой, как и ожидалось, обладают значительно большей вязкостью, чем соответствующие цианопроизводные (соединения 6 и 7).

5. Заключение

Проведены систематические исследования влияния молекулярной структуры жидкокристаллических цианоэтиловых эфиров на их свойства. Показано, что введение этил-эфирной группы между циан-группой и фенильным или циклогексановым фрагментом приводит к уменьшению температуры просветления, диэлектрической и оптической анизотропии, увеличению вязкости по сравнению с аналогичными соединениями. Представленная здесь информация может обеспечить более качественный молекулярный дизайн жидких кристаллов для электрооптических дисплеев.

ЛИТЕРАТУРА

- 1. Grebenkin M.F., Petrov V. F., Belyaev V. V., Pavluchenko A. I., Smirnova N. I., Kovshev E. I., Titov V. V., Ivashchenko A. V. Synthesis and properties of 5-alkyl-2-(4-cyanophenyl)pyridines // Mol. Cryst. Liq. Cryst., 1985, V. 129, P. 245-257.
- 2. *Петров В. Ф., Гребенкин М. Ф.* Влияние молекулярной структуры жидких кристаллов на их физико-химические свойства І. Полярные производные пиридина // Ж. физ. хим., 1991, № 10, С. 1356-1359.

- 3. *Петров В. Ф., Гребенкин М. Ф., Карамышева, Л. А., Гейвандов Р. Х.* Влияние молекулярной структуры жидких кристаллов на их физико-химические свойства II. Полярные производные циклопентана и циклогексана // Ж. физ. хим., 1991, № 10, С. 1359-1362.
- 4. *Петров В. Ф., Павлюченко А. И., Гребенкин М. Ф., Смирнова Н. И.* Влияние молекулярной структуры жидких кристаллов на их физико-химические свойства III. Полярные производные 5,6,7,8-тетрагидрохинолина // Ж. физ. хим., 1991, № 12, С. 2246-2248.
- 5. Pavluchenko A. I., Smirnova N. I., Petrov V. F., Grebyonkin M. F., Titov V. V. Liquid crystal pyridine derivatives of high positive dielectric anisotropy // Mol. Cryst. Liq. Cryst., 1991, V. 209, P. 155-169.
- 6. *Bezborodov V. S., Petrov V. F., Lapanik V. I.* Liquid crystalline oxygen containing heterocyclic derivatives // Liquid Crystals, 1996, V. 20, № 6, P. 785-796.
- 7. *Duan M., Tasaka T., Okamoto H., Petrov V. F., Takenaka S.* Liquid crystalline properties of dissymmetric molecules IV. The substituent effect on thermal properties of nematic and smectic A phases in three aromatic ring systems with ester linkages // Liq. Cryst., 2000, V. 27, No. 9, P. 1195-1205.
- 8. *Petrov V. F., Shimizu Y.* Nitro substitution in achiral calamitic liquid crystals // Liq. Cryst., 2001, V. 28, No. 11, P. 1627-1647.
- 9. *Schad Hp., Baur G., Meier G.* Investigation of the dielectric constants and the diamagnetic anisotropies of cyanobiphenyls (CB), cyanophenylcyclohexanes (PCH), and cyanocyclohexylcyclohexanes (CCH) in the nematic phase // J. Chem. Phys., 1979, V. 71, No. 8, P. 3174-3181.
- 10. *Schadt M.* Liquid-crystal displays and liquid-crystal materials: key technologies of the 1990s // Displays, 1992, V. 13, No. 1, P. 11-34.
- 11. *de Jeu W. H.*. Physical Properties of Liquid Crystalline Materials, 1980. New York: Gordon & Breach, 134 p.
- 12. de Jeu W. H., Gerristma C. J., van Zanten P., Goosens W. A. Relaxation of the dielectric constant and electrohydro-dynamic instabilities in a liquid crystal // Phys. Lett. A, 1972, V. 39, No. 5, P. 355-356.
- 13. *Jakeman E.*, *Raynes E. P.* Electro-optic response in liquid crystals // Phys. Lett. A, 1972, V. 39, P. 69-70.
- 14. *de Gennes P. G., Prost J.* The Physics of Liquid Crystals, Oxford: Clarendon Press, 1993, 596 p.
- 15. Wu S.-T., Wu C.-S. Experimental conformation of the Osipov-Terentjev theory on the viscosity of nematic liquid crystals // Phys. Rev. A, 1990, V. 42, No. 4, P. 2219-2227.
- 16. *Беляев В. В.* Вязкость нематических жидких кристаллов // Успехи химии, 1989, Том 58, No. 10, C. 1601-1670.
- 17. Constant J., Raynes E. P. Flow viscosities of cyanobiphenyls // Mol. Cryst. Liq. Cryst., 1980, V. 62, P. 115-123.
- 18. *Diogo A. C., Martins A. F.* Thermal behaviour of the twist viscosity in a series of homologous nematic liquid crystals // Mol. Cryst. Liq. Cryst., 1981, V. 66, P. 133-146.
- 19. *Dabrowski R., Zytynki E.* Mesomorphic properties of 4-n-pentylbiphenyl derivatives // Mol. Cryst. Liq. Cryst., 1982, V. 87, P. 109-135.

- 20. *Petrzilka M*. Polar acetylenic liquid crystals with broad mesomorphic ranges. The positional influence of different C, C elements on the transitional temperatures // Mol. Cryst. Liq. Cryst., 1984, V. 111, P. 329-346.
- 21. *Osman M. A., Hynh-Ba T.* Aliphatic liquid crystals with positive dielectric anisotropy // Hel. Chim. Acta, 1984, V. 67, № 4, P. 959-963.
- 22. *Osman M. A.* Substituted terminal alkyl groups and their prospects in liquid crystal chemistry // Mol. Cryst. Liq. Cryst., 1985, V. 131, P. 353-360.
- 23. Беляев В. В. Вязкость нематических жидких кристаллов, М:Физматлит, 2002.

LIQUID CRYSTALLINE CYANOETHYL ESTERS

V. Petrov*, V. Belyaev*

* Gubkin Russian State University of Oil and Gas 65 Leninsky prospect, Moscow 119991, Russia;

> * Moscow State Region University 10a Radio St., Moscow 105005 Russia

Abstract. We report the mesomorphic and physic-chemical properties of some liquid crystalline cyanoethyl esters. The influence of the molecular structure of these compounds on their properties is discussed

Keywords:. liquid cristals, molecular structure, tsianetilovy broadcasts.